
1

YARV
Yet Another RubyVM

SASADA Koichi
Tokyo University of Agriculture and Technology

Nihon Ruby no Kai

Ko1@atdot.net

RubyConf2004 Oct. 2

2

Ask Ko1
YARV

Yet Another RubyVM

SASADA Koichi
Tokyo University of Agriculture and Technology

Nihon Ruby no Kai

Ko1@atdot.net

RubyConf2004 Oct. 2

3

Ko1 に聞け
YARV

Yet Another RubyVM

ささだ　こういち
東京農工大学大学院

日本Rubyの会

Ko1@atdot.net

RubyConf2004 Oct. 2

4

Caution!

 I can’t use English well
• If I say strange English, you can see the slide page

• This slide checked by other guys

• If you have any question, ask me with:
• Japanese (recommended)
• Ruby, C, Scheme, Java, …
• IRC (@freenode#rubyconf)
• Easy English (less than 10 words, only easy words)

5

Agenda

 From Japanese Rubyist
 About me
 About YARV

• Background
• Design overview
• Implementation
• Optimization
• Current status

6

Q. Who are you?
A. Self Introduction

 A Student for Ph.D. 1st degree
• Systems Software for Multithreaded Arch.

• SMT / CMP or other technologies
• i.e.: Hyper threading (Intel), CMT (Sun)
• OS, Library, Compiler and Interpreter
• YARV is my first step for Parallel interpreter (?)

• Computer Architecture for Next Generation

At Public Position

7

A. Self Introduction (cont.)

 Nihon Ruby no Kai
• Rubyist community in Japan founded on 8th Aug.
• Organized by Mr. Takahashi (maki)

 Rubyist Magazine (10th Sep.)
• http://jp.rubyst.net/magazine

 Ruby-dev summary
 Favorite method

• __send__
• Recently, Japanese rubyist must say so

8

A. Self Introduction (cont.)

 Ko1?
• “Koichi” → 「こういち」 → 「耕一」

• 「一」 means “one” in Japanese
 Works (part time job)

• Kahua: Application Server framework in Scheme
• Coins: a Compiler Infrastructure

• A compiler framework languages in Java supporting
various language

• I don’t like Java language. But Eclipse is quite good (If
I have a high performance machine)

9

A. Self Introduction (cont.)

 Software
• Rava: A JavaVM in Ruby

• My best joke software

• Rucheme: A Scheme interpreter in Ruby
• Compile to instruction set which I designed
• I like Scheme

• Nadoka: IRC Client Server software
• IRC proxy/bouncer
• Ruby’s killer application (… nobody else may agree)

10

A. Self Introduction (cont.)

 Home page
• http://www.namikilab.tuat.ac.jp/~sasada/
• Of course in Japanese :)

 Organize polls on many topics

11

Q. Why do you make YARV?
A. Project Background

 Ruby - Object Oriented Scripting Language
• Very easy to use, but still powerful
• Used world-wide
• From Japan (to make my sponsor (officials) happy)

 But… Current Ruby interpreter is slow
• Traverse Abstract Syntax Tree in runtime
• Some projects chose other languages (e.g. Java)

because Ruby was just too slow for them
• And everyone says “Ruby? Ah, slow language” (myth)

12

A. Project Background (cont.)

 Bytecode Interpreter seems to be good
• Like Lisp, Java, .Net, Smalltalk, …

 Existing bytecode interpreter for ruby
→ Not enough
• Matz’ try → incomplete
• ByteCodeRuby (Mr. Marrows) → Slow (old info?)
• And other incomplete interpreters

13

Q. What is YARV?
A. Project overview

 Creating a Ruby VM
 Funded by “Exploratory Software

Development” – “Exploratory youth”
• 未踏ソフトウェア創造事業 – 未踏ユース

• By IPA – Information-technology Promotion
Agency, Japan.

• Another Ruby Project is accepted in this year
• Ruby Compiler for .Net by Mr. Asakawa

14

A. Project overview (cont.)

 VM Instruction (insn.) set “design”
 Compiler design and implementation(impl.)
 VM design and impl.
 JIT (Just In Time) and AOT (Ahead Of Time)

compiler design and impl.
 Will be published as Open Source Software
 http://www.atdot.net/yarv/

15

A. Project overview (cont.)

Ruby Script

Compiler Ruby Instruction
Sequence

AOT Compiler

C Source code C Compiler Executable
Shared Library

Ruby VM

(Evaluator)JIT Compiler

Native Code

YARV – The Proposed System

16

Q. What’s the goal of YARV?
A. Goal of YARV

 To be Rite
• If YARV accomplished (Matz promised)

 To be ‘the Fastest RubyVM in the world’
• Now, rival is only current ruby interpreter :)

 To enable all Ruby features
• Very important for claiming “RubyVM” name
• It’s easy to make “Ruby Subset VM”
• … but is it really Ruby?

17

Q. How to pronounce “YARV”?
A. I say like that, but…

 “Name is important” (Matz)
 But “YARV” name is not important
 Because “YARV” will become “Rite”

… if this project succeed
 If failed, no one remember “YARV”
 You can call “YARV” at your pleasure

18

Q. How to implement YARV?
A. Development Policy
 Simple stack machine
 YARV Implemented as Ruby C Extension
 Not “Bytecode” but “Wordcode”

• Easy to access from Processor
 Use Ruby’s existing Infrastructure

• GC
• Ruby Script parser
• Ruby API is very useful in C programming

• i.e) Memory Management
• using Array without “free()” is very happy

19

A. Development Policy
 Compiler parse Ruby’s AST

• Ruby Script Parser creates Node tree
• Traverse this tree and translate to YARV

instructions (insns)
• This compiler is written in C

Ruby Script

Compiler
（Node – Insns) Ruby insn.

Sequence

Ruby Parser
（Ruby – Node)

Ruby Abstract
Syntax Tree

Compiler with Ruby Parser

20

Q. How to implement YARV?(2)
A. Implementation - Registers

 5 registers
• PC: Program Counter
• SP: Stack Pointer
• LFP: Local Frame Pointer
• DFP: Dynamic Frame Pointer
• CFP: Control Frame Pointer

21

A. Implementation - Frames

 Frame types
• Method Frame
• Block Frame
• Class Frame

 Save environment to stack

22

A. Implementation - Frames
(.cont)

 Method Frame
• Same as other VMs
• Identical to Class Frame

 Control frame
• Every frame has this
• Includes “self”,

instruction sequence information,

continuation(keep last regs)
• CFP[0] == self

Stack

Control

Args
Locals

…

LFP, DFP

SP

Environment

CFP
Self

ISeq

Cont.

Block

23

A. Implementation - Frames (cont.)

 Block Frame
• Created when ‘yield’
• LFP points to method

local environment
• DFP point to current

environment
• DFP[0] point to previous

environment

Stack

Ctrl

LFP
Args

Locals

…

Prev Env

Ctrl

Args
Locals

…

CFP

SP
Ctrl

Args
Locals

…

Prev EnvBlock

DFP

24

A. Implementation - Proc

 Creating Proc Object
• Proc enables indefinite extent

• Moving environment to heap

• LFP and DFP point
env. in heap

Stack

Ctrl

Args
Locals

…

Block

Proc

Env.

Env.

Env.

Proc sample
def m arg; x = 0
 iter{|a| i=1
 iter{|b| j=2
 Proc.new
 }}; end

LFP

DFP

CFP

SP
Struct ProcObject:
 VALUE self;
 VALUE *lfp;
 VALUE *dfp
 VALUE iseqobj;

25

A. Implementation - Block

 Blocks are pushed on stack
• A Block body is allocated by

area allocation like “alloca()”
• Used by ‘yield’ insn.

Stack

Ctrl

Args
Locals

…

Block

Blcok
Info

Struct
BlockObject:
 VALUE self;
 VALUE *lfp;
 VALUE *dfp
 VALUE iseqobj;

Block sample
iter{
 ...
}

26

A. Implementation - Block (Proc)

 Procs are pushed on stack
• Used by ‘yield’ insn.
• Same data structure as Proc
• Can treat as Block object

Stack

Ctrl

Args
Locals

…

Block

Proc sample
def m arg; x = 0
 iter{|a| i=1
 iter{|b| j=2
 Proc.new
 }}; end

Proc

Env.

Env.

Env.

cont.

iter(m(arg))

27

A. Implementation
Exception / Jump

 Use exception table to handle
• Like JavaVM
• Types of entries

• Rescue clause
• Ensure clause
• Retry point

• Each entry have
• PC range
• Continuation PC and SP

 If jump occurred, rewind stack and check this table

28

 Different from Java and other ordinary VM
• Must manage continuation SP register

A. Implementation
Exception / Jump (cont.)

Java can do this?
V = 1 + begin
 FOO
 rescue
 BAR
 ensure
 BAZ
 end

29

A. Implementation - Ensure

 If no error/jump occurred, ensure is done
by normal instruction flow (copied / like
recent Java compiler)

sample
begin
 A
ensure
 B
end

Compiled:
 Start_A:
 A
 End_A:
 B
 End_B:
 end

ExceptionTable:
entry:
 type: ensure
 range: Start_A – End_A
 do: B
 restart point: End_B
 restart sp: 0

30

Q. What Insn does YARV has?
A. Insn Category List
 Insn names are not abbreviated
 Stack control

• Swap, dup, …
 Accessor

• get/setlocal, get/setconstant, …
 Put something

• putobject, putnil, putarray, …
 Apply some change to object

• concatstrings, …

31

A. Insn Category Lists
 Method definition

• methoddef
 Method call, Class/Module def

• send, classdef, moduledef, yield, super, …
 Control flow

• goto, if, unless, throw
 Optimization

• get/setinlinecache, opt_plus, opt_…, …
 And others

32

Q. How to write each insn?
A. Insn Description Language
 Instruction Description Language

• Body is written in C
• Declare variables

• Operands
• Values popped from or pushed to the stack

• Parsed by Ruby
• This scheme enables flexible VM creation

• Apply some optimization techs
• Insert debug print
• Make document automatically (similar to rdoc)

33

A. Insn Description Language
(cont.)
/**
 @c put
 @e put self.
 @j self を置く。
 */
DEFINE_INSN
putself
()
()
(VALUE val)
{
 val = GET_SELF();
}

34

A. Insn Description Language
(cont.)
/**
 @c variable
 @e get local variable(which is pointed by idx).
 @j idx で指定されたローカル変数をスタックに置く。
 */
DEFINE_INSN
getlocal
(ulong idx)
()
(VALUE val)
{
 val = *(GET_LFP() - idx);
}

35

Q. Does YARV have optimizer?
A. YARV Optimization Tech.
 Inline cache

• Global “VM state version” counter
• It’s incremented when some side-effect change

• (Re)Definition of Constant
• (Re)Definition of Method

• Cache some values with this count
• If kept counter equals current counter you can

use cached value
• This scheme is used by Constant access and

method search

36

A. YARV Optimization Tech.
(cont.)

 Inline cache (cont.)
• Constant access needs some insns

• A::B::C needs 4 insns
• With this inline cache, this can be shortened to 1 insn

• Method search
• Current using Global method cache (which works

wells)
• Inline caching: planned (to be measured first)

37

 Stack caching
• 2 level stack caching
• Cache 2 stack top values
• With insn description, this can be automated

 Direct threaded code
• Using GCC feature (label as value)

A. YARV Optimization Tech.
(cont.)

38

 Super instructions
• Merge two (or more) insns to one insn
• Replace frequent insn sequence with super insn.

 Make Special instruction
• putobject true → puttrue
• 1 + 1 → put 1; put 1; opt_plus

 These techs are very effective because:
• give C compiler more opportunity for optimization

 I want to do these automatically from
statistics data, but difficult?

A. YARV Optimization Tech.
(cont.)

39

 JIT compile
• I’m searching for an easy way

• Using existing libraries
• Using copy code technique

• Compile in C, and copy with label information

• Seems to need much more effort

A. YARV Optimization Tech.
(cont.)

40

 AOT compile
• Substitute insn to C implementation code and

compile it with C compiler
• Description language will helps
• Easy. Can rely on powerful C optimizer
• Output will be normal C extension method
• Very very simple experiment shows x100

speedup

A. YARV Optimization Tech.
(cont.)

41

Q. Is YARV working now?
A. Current Status
 Variables

• Method local, block local, global, instance, Constants,
…

 Class/Module definition
 Control flow

• if/unless, while/until, case/when
• begin/rescue/ensure, return, break/retry/next/redo

 Method invocation and yield block
• Call and yield with arguments, optional/rest arguments
• Call with block

42

Q. Current limitations on YARV?
A. Many

 Can’t call Ruby from C
• It mean that “10000.times{ … }” doesn’t work
• To enable that, I must patch ruby/eval.c

 Missing some useful Ruby features
• Stack trace, set_trace_func, method_missing
• Proc as method visibility check, creating Proc object, …
• And many many schemes :-P

43

Q. How fast will YARV run?
A. Benchmark result

 Everyone loves benchmarking!
• Of course, me too!
• and Everyone will love the result!

 (omitted)
• Try on your machine

44

Q. Why Original System?
A. Comparison to other systems

 v.s. JavaVM, .Net, Squeak, …
• They have very nice library and optimizer
• Just a mapping of Ruby Specification to VM’s

own models
• Trade off between optimizer and Ruby stub
• Is it fun?

 v.s. Parrot
• Register model VM really fast in “Interpreter”?
• Is it fun?

45

Q. Schedule of YARV?
A. Schedule
 2004

• - Oct: implement basic feature of Ruby
• Aug. 30, 31 meeting with Matz
• Oct. 1-3 RubyConf 2004
• - Nov: implement JIT compiler
• - Dec: implement AOT compiler

 2005
• Debug debug debug!
• - Mar: finish the fund
• -?: Rite release

46

Q. What are the rest tasks?
A. Future Work

 Implement complete Ruby Specification
 Implement Optimizers

• JIT/AOT compiler, other interesting optimize tech.
 Collect benchmark program

• Do you have any program for it?
 Some other features

• Marshaling YARV instruction sequence, …
 Implement other dynamic language on YARV

• Scheme, ECMA Script, …, Python, Perl 6?

47

Q. How to join YARV
development?
A. YARV Development community

 Home page
• http://www.atdot.net/yarv/
• Install instructions and some information

 Mailing list
• Yarv-dev (in Japanese)
• Yarv-devel (in English) … no one using

48

Q. Finished?
A. Yes.
 Thank you
 Special Thanks

• Alexander Kellett, Sanimir Agovic
• Ruby-talk, Yarv-dev subscriber
• Matz and other rubyists
• IPA (my sponsor)

 Any other questions? Please “Ask Ko1”
SASADA Koichi

Ko1 at atdot dot net

