
 1

YARV
Progress Report

SASADA Koichi
Tokyo University of Agriculture and Technology

Nihon Ruby no Kai

Ko1@atdot.net

RubyConf 2005 Oct. 14

 2

Agenda
 Self Introduction and Japanese Activities
 Overview of YARV
 Goal of YARV
 Current YARV Status

• YARV Design, Optimization Review
• Evaluation

 Conclusion

 3

Self Introduction
 “SASADA” the family name
 “Koichi” is given name → “ko1”
 A Student for Ph.D. 2nd grade

• Systems Software for Multithreaded Arch.
• SMT / CMP or other technologies
• i.e.: Hyper threading (Intel), CMT (Sun), Power (IBM)
• OS, Library, Compiler and Interpreter
• YARV is my first step for Parallel interpreter (?)

• Computer Architecture for Next Generation
At Public Position

Not a
Son-shi

 4

Self Introduction (cont.)

 Nihon Ruby no Kai
• Organized by Mr. Takahashi (maki)

 Rubyist Magazine (http://jp.rubyst.net/magazine)

• vol. 10 at 10th Oct. 2005
• 1st anniversary at 6th Sep. 2005 (vol. 9)

 Ruby-dev summary
 English Diary some days

• But retired…

Well known as
Takahashi

Method

 5

Overview
of

YARV

 6

Overview: Background
Ruby is used world-wide,

one of the Most Comfortable
Programming Language

 Ruby is slow, because interpreter
doesn’t use Virtual Machine techniques

→ We need RubyVM!

 7

Overview: YARV

 YARV: Yet Another RubyVM
• Started development on 1st Jan. 2004

• At that time, there were some VMs for Ruby

• Simple Stack Virtual Machine
 http://www.atdot.net/yarv/
 Ruby’s license, of course

 8

Overview:
FAQ (review of last year FAQ)

 Q: How does “YARV” pronounce?
 A: You can pronounce “YARV” what you like.
 Q: Should I remember the name of “YARV”?
 A: No. If YARV succeeds, it renames to Rite, if

doesn’t, no one remember YARV.
• About YARV, name is NOT important

 Q: YARV will be Ruby 2.0?
 A: I hope so. But Matz will decide it.

 9

Overview:
YARV System
Ruby Program

Compiler

YARV Instruction
Sequence

Virtual Machine

JIT Compiler

AOT Compiler

C Souce

C Compiler

Extension Lib.
Native code

 10

Overview:
Current Interpreter

a =

Method
Dispatch(:+)

cb

Abstract Syntax TreeRuby Program

a = b + c

a =

Method
Dispatch(:+)

cb

a =

Method
Dispatch(:+)

cb
Current Interpreter

traverses AST
directly

Parse

 11

Overview
YARV - Stack Machine
Ruby Program

a = b + c

getlocal b
getlocal c
send +
setlocal a

YARV Instructions

a

b

c b

c

b+c

b+c

YARV Stack

Compile

 12

The Goal
of

YARV

 13

The Goal of YARV
YARV: Yet Another RubyVM

→ The RubyVM
•To be the Ruby 2.0 VM Rite

Fastest Ruby Interpreter
•Easy to beat current fastest VM

 14

The Goal of YARV (cont.)

 Support all Ruby features
• Include Ruby 2.0 new syntaxes

 Native Thread Support
• Concurrent execution (Giant VM lock)
• Parallel execution on parallel machine

 Multi-VM Instance
• Same as MVM in Java

N
ew

 features

 15

Goal: Ruby 2.0 syntax
 Matz will decide it
 “{|…| … }” == “->(…){ … }”
Multiple-values

•Same as Array? Or first class
multiple-values support?

Selector-namespace?

Really?

 16

Goal:
Native Thread Support
 Three different thread models
 Model 1: User-level thread (Green Thread)

• Same as current Ruby interpreter
 Model 2: Native-thread with giant VM lock

• Same as current Ruby interpreter
• Easy to implement

 Model 3: Native-thread with fine grain lock
• Run ruby threads in parallel
• For enterprise?

 17

Goal: Native Thread Support (cont.)

CPU 1

CPU 2
IDLE

Current Ruby Interpreter
& Model 1

OS Thread 1

Thread 1 Thread 2 Thread 1

 18

Thread 1

Thread 2

Thread 1

CPU 1

CPU 2
IDLE

Model 2:
Native thread with Giant VM Lock

OS Thread 1

OS Thread 2

Goal: Native Thread Support (cont.)

Lock Lock

 19

Goal: Native Thread Support (cont.)

Thread 1

Thread 2

CPU 1

CPU 2

Model 3:
Native thread with Fine Grain Lock

OS Thread 1

OS Thread 2

Busy

 20

Goal: Native Thread Support
Summary

BadBadGoodPortability

HardEasyNorm.Impl. Difficulty

HighSomeNoLock overhead

BestBad?BadScalability

Model 3Model 2Model 1

 21

Goal:
Multi-VM Instance
Current Ruby Process

Ruby Process with Multi-VM Instance

Process
Ruby Interpreter (VM)

Ruby インタープリタ（VM）
Ruby インタープリタ（VM）

Ruby インタープリタ（VM）
Ruby Interpreter (VM)Process

 22

Goal: Multi-VM Instance (cont.)
 Current Ruby can hold only 1 interpreter

in 1 process
• Interpreter structure causes this problem
• Using many global variables

 Multiple-VM instance
• Running some VM in 1 process
• It will help ruby embedded applications

•mod_ruby, etc

 23

Thread 1

Thread 2

Thread 1

CPU 1

CPU 2

OS Thread 1

OS Thread 2

Multi-VM Instance +
Thread Model 2

Lock of VM1 Lock of VM1

OS Thread 3

Thread 1 on VM 2

VM1

VM2Lock of VM2

Busy

 24

Review
Summary with MV

Bad

Easy

Some

Good

M2+MV

BadBadGoodPortability

HardEasyNorm.Impl. Difficulty

HighSomeNoneLock overhead

BestBad?BadScalability

M3M2M1

 25

Goal: Load Map
 All Ruby features support

• Feb. 2006 …?
 Native Thread Support

• Experimental: Dec. 2005
• Complete: 2006?(model 2) 2007?(model 3)

 Multi-VM Support
• Experimental: Feb. 2006
• Complete: 2006?

 26

Status
of

YARV

 27

Status: System
Ruby Program

Compiler

YARV Instruction

Virtual Machine

JIT Compiler

AOT Compiler

C Souce

C Compiler

Extension Lib.
Native code

Almost Incomplete

Almost

Almost

Not yet

 28

Status:
Supported Ruby Features
 Almost all Ruby features
 Not supported:

• Few syntaxes … {|*arg| …}
• Visibility
• Safe level ($SAFE)
• Some methods written in C for current Ruby

implementation
• Around Signal
• C extension libraries

• Because yarv can’t run “mkmf.rb”

 29

Status: Versions
 0.2: YARV as C Extension

• Need a patch to Ruby interpreter
 0.3 (2005-8): YARV as Ruby Interpreter

• Merged to Ruby source code (Ruby 1.9 HEAD)
• Maintained on my Subversion repository

 Latest version: 0.3.2
• Native thread (pthread / win32) supports on model 2

 30

YARV 0.2.x

YARVYARV

Optimizer

Compiler

Use as C Extension

Using C API VM

Evaluator

Ruby InterpreterRuby Interpreter

Patched

 31

YARV 0.3.x

YARVYARV

Optimizer

Compiler
VM

YARV merged with Ruby InterpreterYARV merged with Ruby Interpreter

Generational GC

m17n
Selector Namespace

…

Future Work

 32

Status:
Compile & Disasm CGI
http://www.atdot.net/yc/

 33

Status:
VM Design
 5 registers

• PC: Program Counter
• SP: Stack Pointer
• CFP: Control Frame Pointer
• LFP: Local Frame Pointer
• DFP: Dynamic Frame Pointer

 Some stack frame
 Control stack and value stack

 34

Status:
VM Design – Stack Frame

Stack

LFP

Args
Locals

…

Prev
Env Ptr

Args
Locals

…

CFP
SP

Args
Locals

…

Prev
Env Ptr

Block
Ptr

DFP

Ctrl
Frame

Ctrl
Frame

Ctrl
Frame

PC
SP
BP

ISEQ
Self
LFP
DFP
…

Control Frame
Stack

 35

Proc
（Closure）

Env.

Env.

Env.

LFP
DFP Prev

Env Ptr

Args
Locals

…

HEAP

Status:
VM Design – Closure

 36

Call Graph of YARV Execution

VM handler Func (setjmp)
　　VM Func
　　　　C Func
　　　　　　VM handler Func(setjmp)
　　　　　　　　VM Func
　　　　　　　　　　C Func

Search
Exception

Table
If not match,

longjmp

Raise with
longjmp

Status:
VM Design – Exception

 37

Status:
VM Generator (in Ruby)

VM Instrunction
Description

Compiler
(Optimizer)

Virtual Machine

Verifier

Dis-assembler
Assembler

Documents

C SourceAOT Compiler

Future work

 38

Status:
Optimization
 Simple Stack Virtual Machine

• Re-design Exception handling
 Peep-hole optimization on compile time

• I gave up static program analysis
• Dynamicity is your friend, but my ENEMY

 Direct Threaded code with GCC

 39

Status: Optimization (cont.)
 Specialized Instruction

• i.e.) Ruby program “x+y” compiled to special instruction
instead of a method dispatch instruction

// Specialized “+” instruction
instruction opt_plus(x, y){
 if(x is Fixnum && y is Fixnum)
 if(Fixnum#+ is not re-defined)
 return x+y;
 return x.+(y);

 40

Status: Optimization (cont.)
 In-line Cache

• In-line Method Cache
• In-line Constant Value Cache

• Because Ruby’s “Constant Variable” is not Constant!

 Embed values in an Instruction sequence

 41

Status: Optimization (cont.)
In-line Constant Value cache

putnil
getconstant A
getconstant B
getconstant C

getinlinecache
putnil
getconstant A
getconstant B
getconstant C
setinlinecache

Skip if value is cached!

Ruby Program
A::B::C

optimized
compile

 42

Status: Optimization (cont.)
 Unified Instruction

• Operands Unification
• Insn_A x → Insn_A_x

• Instructions Unification
• Insn_A, Insn_B → Insn_A_B

 Unified instructions are auto generated by
VM generator
• I only decide which instructions should be

combined.

 43

Status: Optimization (cont.)

 Stack Caching
• 2 registers, 5 states
• putobject (put 1 values on stack)

• putobject_xx_ax
• putobject_ax_ab
• putobject_bx_ba
• putobject_ab_ba
• putobject_ba_ab

 44

Status: Optimization (cont.)
Stack Caching

getlocal v2
getlocal v3
send +
setlocal v1

YARV Insns

Ruby Program
v1 = v2 + v3

getlocal_xx_ax v2
getlocal_ax_ab v3
send_ab_ax +
setlocal_ax_xx v1

YARV

v1

v2

v3

b+c

Stack

regA

regB

v2

v3

b+c

No need to
touch the Stack

Reg A

Reg B

 45

Status: Optimization (cont.)

 JIT Compilation
• I made easy one for x86, but…
• Too hard to do alone. I retired.

 AOT Compilation
• YARV bytecode → C Source
• Easy to develop
• Hard to support exception

 46

Status: Demo
 YARV Building Demo?
 YARV Running Demo?

 47

Status: Evaluation

Base: only base VM
DTC: Direct Threaded Code
SI: Specialized Instruction

OU: Operand Unification
IU: Instruction Unification

Yield Block
is not fast

IMC: Inline Method Cache
SC: Stack Caching

i=0
i+=1 while i<MaxMax.times{}

Fast

 48

Status: Evaluation (cont.)

x20 Faster

 49

Status: Evaluation (cont.)
No speed-up.

VM is not bottleneck.

Regexp

Bignum
Object

allocation

Build Exception
object

 50

Status: Evaluation (cont.)

Compare with other languages
Slow

 51

Status: Awards
 2004: Funded by IPA Exploratory Software

Development “Youth”
• IPA: Information-technology Promotion Agency,

Japan
 2005: Funded by IPA Exploratory Software

Development (continuance)
• I can’t walk away from the development

 2004: Got Award as “Super Creator” from IPA

 52

Conclusion

 53

Conclusion
 YARV supports almost Ruby syntaxes
 YARV supports some Ruby libraries

• But can’t build Extension Libraries
• Because YARV can’t run “mkmf.rb”

 YARV 0.3.2 supports native thread
 YARV achieves significant speedup for

Ruby programs execution which have
VM bottleneck
• This means that we can enjoy Symbol

Programming with Ruby

 54

Conclusion: Future work
 Support all Ruby features

• At least, YARV must work with “mkmf.rb”
 Support every Thread Model

• Especially model 2 and 3
 Support Multi-VM Instance

 55

How Can You Help me
 Any comments are welcome

• Build reports, Bug reports, architecture reports, …
 yarv-devel Mailing List

• English ML for YARV development
• Matz and other Japanese also join

 YARVWiki
• http://yarv.rubyforge.org/pukiwiki/pukiwiki.php

 Give me a job (I’ll finish my course 2 years later)

 56

Special Thanks
 Matz the architect of Ruby
 IPA: Information-technology Promotion

Agency, Japan (my sponsor)
 Gabriele Renzi, Ippei Tate
 YARV development ML subscribers

• Yarv-dev (Japanese)
• Yarv-devel (English)

 All rubyists

 57

Finish
“YARV Progress Report”

Thank you for your attention.
Any Questions?

SASADA Koichi
ko1@atdot.net

