YARV: Yet Another RubyVM

Innovating the Ruby Interpreter

Koichi Sasada
Graduate School of Technology,
Tokyo University of Agriculture and Technology
2-24-16 Nakacho, Koganei-shi, Tokyo, Japan.

sasada@namikilab.tuat.ac.jp

ABSTRACT

Ruby - an Object-Oriented scripting language - is used world-
wide because of its ease of use. However, the current in-
terpreter is slow. To solve this problem, some virtual ma-
chines were developed, but none with adequate performance
or functionality. To fill this gap, I have developed a Ruby
interpreter called YARV (Yet Another Ruby VM). YARV
is based on a stack machine architecture and features op-
timizations for high speed execution of Ruby programs. In
this poster, I introduce the Ruby programming language,
discuss certain characteristics of Ruby from the aspect of
a Ruby interpreter implementer, and explain methods of
implementation and optimization. Benchmark results are
given at the end.

Keywords

Interpreter Implementation, Scripting Language, Ruby

1. INTRODUCTION

Ruby is the interpreted scripting language developed by
Yukihiro Matsumoto for quick and easy object-oriented pro-
gramming([2, 7]. It is simple, straight-forward, extensible,
and portable. It has many features to process text files and
to do system management tasks (as in Perl[1]) and many
more.

Ruby has following characteristics.

e Simple syntax
e Normal OO features (class, method call, etc.)

e Advanced OO features (all values are objects, Min-in, Sin-
gleton method, etc.)

e Dynamic-typing, re-definable behavior, dynamic evaluation

e Operator overloading

e Exception handling

e Closure and method invocation with a block
e Garbage collection support

e Dynamic module loading

e Many useful libraries

e Highly portable

However, current Ruby intepreter is slow. This is because
current interpreter (old-ruby) works by traversing abstract
syntax tree and evaluates each node. To solve this prob-
lem, I have developed new Ruby interpreter called YARV
(Yet Another RubyVM), which is a stack machine and runs
Ruby programs in compiled intemediate representation of
sequential instructions. I'm working to replacing old-ruby
with YARV.

This poster is dedicated to discussing the Ruby program-
ming language and the advantages and challenges that Ruby
presents as an interpreter target, with speed-up being the
principal goal. YARV’s implementation and optimization
features are then presented and the results are evaluated.

2. YARV IMPLEMENTATION

2.1 Overview

YARYV is a simple stack machine written in C. The VM
has a stack, a program counter (PC), a stack pointer (SP),
some frame pointers (FP). YARV compiles a Ruby script
into YARV instruction (intermediate) code sequences. The
instruction set is designed for Ruby specifically.

YARV reuses many parts of old-ruby, namely the Ruby
script parser, the object management mechanism, the garbage
collector and more. In fact, YARV is implemented as an ex-
tension module for old-ruby.

YARY currently works on Linux with GCC and Windows2000/XP

with Visual C++ or cygwin.

2.2 Intepreter Auto Generation

To create the virtual machine, I generate the code for the
VM from a VM description written in a VM description lan-
guage (VMDL) like vigen[5]. Figure 1 shows the definition
of an VM instruction (named instructionl).



DEFINE_INSTRUCTION
instructionl // instruction name
(VALUE opl) // operand values
(VALUE spl) // popped values from stack
(VALUE r1) // values will be pushed to stack
{
// instruction logic of instructionl
// using opl, spl
// and at last assign value to rl
}

Figure 1: VM description language

In the VMDL, one declares operands, stack operands, and
return values for each instruction. The programmer doesn’t
need to write the code to control the PC, SP, stack or fetch-
ing operands.

Furthermore, VMDL can generate optimized code automat-
ically. The topic will be treated in the next subsection.

2.3 Optimization
YARYV was implemented with many optimization techniques
in order to create a high-speed interpreter.

Instruction dispatch makes use of dynamic threaded code[3]
with GCC’s extended feature (label as value) instead of
switch/case statements in C.

Since all values in Ruby are objects, Ruby has no primitive
types. For example the Ruby program 1+2 actually means
1.+(2) (amethod + is sent to reciever 1 with an argument 2).
To maximize efficiency, some methods are compiled to spe-
cialized instructions. In this case, method + is compiled to
the spezialized specialised instruction opt_plus. opt_plus
checks the receiver (self) and the argument. If they are both
Fixnums, it checks whether method + of class Fixnum has
been redefined or not. If it has not been redefined, it adds
these values and pushes the result onto the stack. Other-
wise, the normal method dispatch sequence is performed.

Operands unification and instructions unification (also known
as super instruction) is used to optimize. If the program-
mer specifies that an instruction with specific operands or
instruction sequence should be unified, the VM generation
system generates unified instructions and compiler logic for
this instruction.

YARV supports 2-level (2 registers, 5 states) static stack
caching[4]. The VM generation system generates stack caching
instructions and translater for compilation.

Ahead-of-Time (AOT) compilation of Ruby programs is also
supported. The AOT compiler translates a Ruby program
to a C program which runs on YARV. The C compiler then
generates native machine code that is more efficient than
YARV instruction code.

3. EVALUATION

Table 1 shows running time of benchmarks on old-ruby and
YARV. This results were evaluated on Pentium-M 1.2Ghz,
1024MB memory, Windows XP and cygwin, gcc 3.4.4.

4. CONCLUSION

Table 1: Benchmark results

Benchmark | Ruby (sec) YARV (sec) Ruby/YARV
ackermann 29.86 2.61 11.4
Fibonacci 12.72 1.83 7.0
tak 17.36 2.41 7.2
matrix 3.92 1.40 2.8
sieve 10.45 1.81 5.7
count_words 0.69 0.63 1.1
whileloop 16.22 0.99 16.4

In this extended abstract, I described characteristics of the
Ruby language and a new implementation of the Ruby inter-
preter called YARV. Many interpreter optimization schemes
have been applied in the creation of YARV that have caused
speed-up compared to old-ruby.

In the current Ruby interpreter, Ruby’s multi-thread sys-
tem is supported in user-level. This means that we can not
write true parallel application in Ruby. As a solution to
this problem, YARV will support native threads (Operating
System managed it). This will enable Ruby programs to be
more scalable.

Also T am planning to desgin Multi-VM instances mech-
anism like Java Multi-Talking VM[6]. This will improve
performance and assist application programs that embed a
Ruby interpreter.

Ultimately, I will replace current Ruby interpreter with YARV
and YARV becomes The Ruby Virtual Machine.

Acknowledgement

This project is assisted by Exploratory Software Project
2004 (youth) and 2005 from IPA (Information-technology
Promotion Agency, Japan) .

I want to address of thanks to Michael Neumann, Daniel
Amelang, yarv-devel mailing list members and all Rubyists.

5. REFERENCES

[1] Perl.com: The source for perl — perl development, perl
conferences. http://www.perl.com/.

[2] Ruby home page. http://www.ruby-lang.org/en/.

[3] A. Ertl. Threaded code. http://www.complang.
tuwien.ac.at /forth/threaded-code.html.

[4] M. A. Ertl. Stack caching for interpreters. In
Proceedings of the ACM SIGPLAN 1995 conference on
Programming language design and implementation,
pages 315-327. ACM Press, 1995.

[5] M. A. Ertl, D. Gregg, A. Krall, and B. Paysan. vingen:
a generator of efficient virtual machine interpreters.
Softw. Pract. Ezxper., 32(3):265-294, 2002.

[6] J. J. Heiss. The multi-tasking virtual machine:
Building a highly scalable jvm. http://java.sun.com/
developer /technical Articles/Programming/mvm/, 2005.

[7] D. Thomas, C. Fowler, and A. Hunt. Programming
Ruby. The Pragmatic Programmers, 2004.



