
Fiber in the
10th year

Koichi Sasada
ko1@cookpad.com

About this talk

•Behavior of Fiber

•History of Fiber

•Implementation of Fiber

•Auto Fiber proposal

Koichi Sasada
http://atdot.net/~ko1/

•A programmer
•2006-2012 Faculty
•2012-2017 Heroku, Inc.
•2017- Cookpad Inc.

•Job: MRI development
•Core parts
•VM, Threads, GC, etc

Fiber
User-defined context switching

Fiber example
Infinite generator

fib = Fiber.new do

Fiber.yield a = b = 1

loop{ a, b = b, a+b

Fiber.yield a }

end

10.times{ p fib.resume }

Fiber example
Infinite generator

fib = Fiber.new do

Fiber.yield a = b = 1

loop{ a, b = b, a+b

Fiber.yield a }

end

10.times{ p fib.resume }

1. Fiber creation

2. Resume Fiber

3. Return to the
parent fiber

4. Resume fiber
(again)

5. Return to the
parent fiber

6. Resume fiber
(again2)

Fiber example
Infinite generator

fib = Fiber.new do

Fiber.yield a = b = 1

loop{ a, b = b, a+b

Fiber.yield a }

end

10.times{ p fib.resume }

1. Fiber creation

2. Resume Fiber

3. Return to the
parent fiber

4. Resume fiber
(again)

5. Return to the
parent fiber

6. Resume fiber
(again2)

Not a Proc?

a = 0; b = 1

fib = Proc.new{

a, b = b, a+b

a

}

p fib.call #=> 1

p fib.call #=> 1

p fib.call #=> 2

p fib.call #=> 3

p fib.call #=> 5

Proc can’t restart from
the middle of block

Proc (method) v.s. Fiber
Proc (method) Fiber

Start OK: call OK: Fiber#resume

Parameters OK: block (method) parameters OK: block parameters

Return OK: exit Proc/method OK: exit Proc/method

Suspend NG: N/A OK: Fiber.yield

Continue NG: N/A OK: Fiber#resume

Fiber example
Inner iterator to external iterator
f1 = Fiber.new do

2.times{|i| Fiber.yield i}

end

p f1.resume #=> 0

p f1.resume #=> 1

p f1.resume #=> 2 # return value of #times

p f1.resume #=> dead fiber called

(FiberError)

Fiber example
Inner iterator to external iterator
etc_passwd_ex_iter = Fiber.new do

open('/etc/passwd').each_line{|line|

Fiber.yield line

}

end

p etc_passwd_ex_iter.resume #=> 1st line

p etc_passwd_ex_iter.resume #=> 2nd line

…

Fiber example
Inner iterator to external iterator
make Enumerator

iter = open('/etc/passwd').each_line

Enumerator#next use Fiber implicitly

p iter.next #=> 1st line

p iter.next #=> 2nd line

…

Fiber example
Agent simulation
characters << Fiber.new{

loop{cat.move_up; Fiber.yield}}

characters << Fiber.new{

loop{dog.move_left; Fiber.yield}}

…

loop{cs.each{|e| e.resume}; redraw}

Fiber example
Agent simulation
characters << Fiber.new{

you can specify complex rule for chars

loop{

cow.move_up; Fiber.yield

cow.move_right; Fiber.yield

cow.move_down; Fiber.yield

cow.move_left; Fiber.yield

}

}

Fiber example
Non-blocking IO scheduler

Wait multiple IO ops with
traditional “select” or

modern “poll”, “epoll” interface

Not a Thread?

Thread Fiber

Suspend/continue Yes Yes

Switch on timer Yes No (explicit switch)

Switch on I/O blocking Yes No (explicit switch)

Synchronization Required Not required

Specify next context No Yes

Performance: Creation Heavy Lightweight

Performance: Switch Lightweight Heavy (initial version)
Lightweight (now)

Brief History of Fibers

Fiber: Brief history

•2007/05/23 cont.c (for callcc)

•2007/05/25 Fiber impl. [ruby-dev:30827]

•2007/05/28 Fiber introduced into cont.c

•2007/08/25 Fix Fiber spec

Background: Callcc and Fiber on Ruby 1.9

• 2007/01 YARV was merged without “callcc”
• Biggest usage of “callcc” is for “Generator”

• Convert an internal iterator to an external iterator
• Usually one-shot continuation is required

→ Coroutine is enough for this purpose
• Capturing continuation (callcc) is heavy operation
• Implementation is easy because we can refer Ruby 1.8 user-level

threads

• 2007/05/?? I was introduced one paper something like generator
for (maybe) C# (so I began to consider about this feature)
• And I have a spare time at academic conference

2007/05/22 IRC log

(seeing a blog post)
00:56:49 <ko1> うーむ，callcc 欲しいっすか

English: Umm, do you want “callcc”?

2007/05/23 cont.c

2007/05/23 IRC log

(nobu pointed out there are several bugs on callcc)

12:15:36 <ko1> callcc禁止でいいよ

EN: callcc should be prohibited

12:15:52 <ko1> これ作りながら，Fiber作ったほうが

速いなーとか思って亜

EN: Building callcc, I’m thinking that making Fiber

is more straightforward.

Fiber naming

•The name “Fiber” is from Windows API
• “A fiber is a unit of execution that must be manually

scheduled by the application. Fibers run in the context
of the threads that schedule them. Each thread can
schedule multiple fibers. In general, fibers do not
provide advantages over a well-designed
multithreaded application. However, using fibers can
make it easier to port applications that were designed
to schedule their own threads.”
https://msdn.microsoft.com/ja-
jp/library/windows/desktop/ms682661(v=vs.85).aspx

https://msdn.microsoft.com/ja-jp/library/windows/desktop/ms682661(v=vs.85).aspx

[ruby-dev:30828] Re: Supporting Fiber
Naming of Fiber

“Fiberでいいんじゃないでしょうか。

何かかっこいいですよね。” by shugo

EN: “I’m ok the name of “Fiber”.

Somewhat cool.” by shugo

2007/05/28 Introduction
r13295, [ruby-dev:30827]

First Fiber is Coroutine
Fiber#pass
f1 = Fiber.new{

f2.pass; f2.pass}

f2 = Fiber.new{

f3.pass}

f3 = Fiber.new{

f1.pass}

f1.pass

No parents/children
All routines are equivalent

Co-operative routines
= Coroutine

NOTE: renamed to “Fiber#transfer” now

Fiber#pass → Fiber#yield
[ruby-dev:30847] Re: Supporting Fiber

Matz’s idea

Coroutine or Semi-coroutine

•Coroutine is difficult
• You need to manage all transitions of Fibers

• Remember that most of languages have only “routine”
(not “co-”) and it is easy to use.

• Most of case, semi-coroutine is easy and enough
• Exception handling

• On semi-croutine, exceptions are raised to the parent
Fiber(s)

•Maybe it has critical BUG issue.
•Coroutine is powerful
•No limitation (a bit old-language constructs)

[ruby-dev:31583] Fiber reviesed
Semi-coroutine (Fiber) and Coroutine (Fiber::Core)

2007/08/25 IRC log

10:26:49 <ko1> 大クラス主義ならFiber に Semi も Coroutine
も機能いっしょくたにするべきかなあ

EN: Semi- and non-semi Coroutine may be

in one class undr big class principle

10:32:15 <ko1> というわけで，いっしょくたにしてみる

EN: So that I merged it.

* It was just idea in two lines…

Fiber::Core was removed

Commit message does not work well…

Final specification of Fiber

• Semi-coroutine
• Fiber#resume and Fiber.yield
• Make parent and child relationship (tree)
• Prohibit double resume

•Coroutine
• Fiber#transfer
• Prohibt to call semi-coroutine methods

on “transfer”ed fiber (coroutine)

fib1
(parent)

fib2
(child/parent)

fib3
(child)

resume

resume

double resume
is prohibited

NG!!

Implementation of Fibers

Implementation history

(1) 2007/05 Copy all machine stack

(2) 2010/05 FIBER_USE_NATIVE

(3) 2017/09 Switch only pointer

Fiber context representation

•Context:
•Thread states (current program counter, etc)
•VM stack
•Machine stack

•“Context switching” means exchange
contexts

Fiber implementation
2007 (1) Copy machine stack

•Store and restore “Context” by copying
machine stack

machine
stack area

machine
stack of fib1

machine
stack of fib2

Store

Restore

Switch from
running fib1 to
suspended fib2

Fiber implementation
2007 (1) Copy machine stack
•Good
•Same idea of a Ruby 1.8

user-level thread code
•Not so many memory usage
•Almost portable

•Bad
•Copy time is relative to

stack-depth (O(N))

machine
stack area

machine
stack of fib1

machine
stack of fib2

Store

Restore

Fiber implementation
2010 (2) Use Native support

•Switch machine stack by system APIs
•Supported APIs
•POSIX makecontext/setcontext
•Win32 Fiber API

•Machine stack exchange is only pointer
exchange (O(1))

•Implemented by Mr. Shiba (with me)

“A Fast Fiber Implementation for Ruby 1.9”
“Ruby1.9での高速なFiberの実装”,
第51回プログラミング・シンポジウム予稿集, pp.21--28 (2010).

Time ratio

Count of recursive call (== stack depth)

Fiber implementation
2017 (3) More lightweight switching

•Context exchange
• [copy] Thread states
• [ptr exchange] VM stack
• [ptr exchange] Machine stack

•“setcontext” calls sigprocmask
•Ruby threads/fibers use same signal mask

→ Useless system call

Fiber implementation
2017 (3) More lightweight switching

•Context exchange
• [copy->ptr exchange] Thread states

Before After

Thread

fib1

fib2

Store

Restore

Thread

fib1

fib2

ec1

ec2

ptr exchange

fib1
context fib2

context

fib1
context

fib2
context

Fiber implementation
2017 (3) More lightweight switching
•[Futurework] Use custom “setcontext” excludes
sigprocmask
• setcontext issues “sigprocmask” system call to restore

signal mask, but MRI doesn’t change signalmask so
that it is completely useless.
•This idea is also proposed at

https://rethinkdb.com/blog/making-coroutines-fast/
• License?

https://rethinkdb.com/blog/making-coroutines-fast/

Fiber implementation
2017 (3) More lightweight switching

•Performance

2.15
2.2

2.25
2.3

2.35
2.4

Ruby 2.4.1 Modified

Se
c

vm2_fiber_switch*

Fiber implementation
2017 (3) More lightweight switching

•Performance

2.36 2.25

0

1

2

3

Ruby 2.4.1 Modified

Se
c

vm2_fiber_switch*

5%
improvement!

Fiber implementation
2017 (3) More lightweight switching

•Memory size / fiber
30% reduced!

2264

1616

0

500

1000

1500

2000

2500

Ruby 2.4.1 Modified

B
yt

es

sizeof(rb_fiber_t)

Fiber implementation
2017 (3) More lightweight switching

•Memory size / fiber

2,264 1,616
131,072 131,072

524,288 524,288

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

Ruby 2.4.1 Modified

B
yt

es

sizeof(rb_fiber_t) VM stack Machine stack

2017 (3) More lightweight switching
Not a valuable work?

•I spent this hack 2 or 3 months because of
code complicity.

•This work (hopefully) will be a basis of Guild
work (we need to pass context information
for each APIs like mrb_state on mruby)

Auto-Fiber proposal

Auto Fiber proposal

•“Fiber” enables writing scheduler by Ruby
programmer
•Maybe Seki-san introduce one example

•Why doesn’t an interpreter support it
natively? → Auto Fiber proposal

Auto Fiber proposal

https://bugs.ruby-lang.org/issues/13618

https://bugs.ruby-lang.org/issues/13618

Auto Fiber proposal
Automatic schedule on I/O blocking

• Support Fiber scheduler
natively
• Don’t need to return

scheduler

• Switch Fibers on all blocking
I/O (and other ops)
• No need to change existing

programs

Comparison
Thread Fiber Auto Fiber

Suspend/contin
ue

Yes Yes Yes

Switch on timer Yes No No

Switch on I/O b. Yes No Yes

Synchronization Required Not required Required

Specify next No Yes No
Performance: Creation Heavy Lightweight Lightweight
Performance: Switch Lightweight Lightweight Lightweight

Advantage and Disadvantage

•Advantage
•Don’t need to modify existing programs
• Lightweight as a Fiber
•Safer than Threads (no preemption)

•Disadvantage
• Introduce “non-deterministic” dangers same as

Thread programs
• Non atomic operations can intercept accidentally.

Change the name…?

About this talk

•Behavior of Fiber

•History of Fiber

•Implementation of Fiber

•Auto Fiber proposal

Thank you for your attention

Koichi Sasada
<ko1@cookpad.com>

