Fiber in the
10th year

Koichi Sasada g
ko1@cookpad.com

cookpad

About this talk

*Behavior of Fiber
*History of Fiber
*Implementation of Fiber
* Auto Fiber proposal

Koichi Sasada
http://atdot.net/~ko1/

*A programmer
*2006-2012 Faculty

*2012-2017 Heroku, Inc.

*2017- Cookpad Inc.

*Job: MRI development

*Core parts
VM, Threads, GC, etc

cookpad

Fiber
User-defined context switching

-iber example
nfinite generator

fib = Fiber.new do
Fiber.yield a = b =1
loop{ a, b = b, a+tb
Fiber.yield a }

end
10.times{ p fib.resume }

-iber example
nfinite generator

fib = Fiber.new do
/. Fiber.yield a = b =1
loop{ a, b = b, atb
1. Fiber creation Fiber.yield a.} Lo

e n d 3. Return to the 5. Return to the 6. Resume fiber
parent fiber parent fiber (again2)

10.times{ p fib.resume "}

2. Resume Fiber

-iber example
nfinite generator >

/ f j_ b == F j_ b e r . n e W dO L yield(1) (yield(a=1)#linel) :

I
I resume

Fiber.yield a = b = ab=b.ash

L E{ yield(1) (yield(a=1)#line2) :
loop{ ap b = b, atb ..
1. Fiber creation F l e]f ° y l e l d a E ;‘t’

< yield(1) (yield(a=2)#line2) |

en d 3. Return to the 5. Return to the |
parent fiber parent fiber a.b=b, atb
. . E ;’
10.t1mes{ & Tlb.resum e gesessine

i
L resume '
b |

Proc can’t restart from

Not a Proc?

a = 0; b =

fib = Proc.

a, b = b,
a

fib.call
fib.call
fib.call
fib.call
fib.call

'O 'O 'O 'O 'O —«

the middle of block
main fib@1 fib@2 fib@3
1 azoib=1]
new| -
I ca
atb ‘a,b=b,ath !
qu: return a=1
:lcall - |
= 'a,b=b,ath

I I
" returna=1"
Lt |

<«

|
: call

=|=|==I=|==:=|I==I=I==I=I=
vV V. V V V
g w N =

] |
" returna=2'
:.{ 1

ra,b=>b,a+b

main

fib@1l

fib@2

fib@3

Proc (method) v.s. Fiber
. proc(method) |Fber

Start OK: call OK: Fiber#tresume
Parameters OK:block (method) parameters OK: block parameters

Return OK: exit Proc/method OK: exit Proc/method
Suspend NG: N/A OK: Fiber.yield
Continue NG: N/A OK: Fiber#iresume

‘ caller I ‘ callee I

| Fiber#resume |
. >

 call : |
1 < Fiber.yield (suspend)

|]
v return

| Fiber#resume (continue) }:
|]

D
|] |
. d-of-block "
caller callee € o i
e

-iber example
nner iterator to external iterator

f1 = Fiber.new do
2.times{|1| Fiber.yield 1}
end
p fl.resume #=> 0
p fl.resume #=> 1
p fl.resume #=> 2 # return value of #times
p fl.resume #=> dead fiber called
(

FiberError)

-iber example
nner iterator to external iterator

etc passwd ex i1ter = Fiber.new do
open ('/etc/passwd') .each line{|line|
Fiber.yield line
}

end
p etc passwd ex iter.resume #=> 1% line
p etc passwd ex iter.resume #=> 274 line

-iber example
nner iterator to external iterator

¥ make Enumerator

iter = open('/etc/passwd') .each line

Enumerator#next use Fiber implicitly
p iter.next #=> 15t line
p iter.next #=> 274 line

Fiber example
Agent simulation

characters << Fiber.new/{
loop{cat.move up; Filber.yield}}

characters << Fiber.new/{
loop{dog.move left; Fiber.yield}}

loop{cs.each{|e| e.resume}; redraw}

Fiber example
Agent simulation

characters << Fiber.new/{
you can specify complex rule for chars
loop/{
COw.Mmove up; Fiber.yiel
cow.move right; Fiber.yiel
cow.move down; Fiber.yiel
cow.move left; Filber.yiel

Q. 0. O O

-iber example
Non-blocking 10 scheduler

Wait multiple 10 ops with

traditiona

modern “pol

1/ (]
I”,

Ill

epol

I”

select” or
interface

scheduler

| enque worker 1 and 2

' start (#resume)

workerl

worker2

Y__

check 10(x) ready : _
and not x is not readylj < readx) (yield)

Y
|

| start (#resume)

and y is ready

Y

check 10(x, y) readyb] E read(y) (.yield)

\ read_result(y) (#resume)

check 10(x) ready B| '

Y

and x is ready € finish

' read_result(x) (#resume) !

51 finish

>
I

scheduler

workerl

worker2

Not a Thread?

_____ Thred _____ |Fiber

Suspend/continue Yes Yes

Switch on timer Yes No (explicit switch)
Switch on I/O blocking Yes No (explicit switch)
Synchronization Required Not required

Specify next context No Yes

Performance: Creation Heavy Lightweight
Performance: Switch Lightweight Heavy (initial version)

Lightweight (now)

Brief History of Fibers

Fiber: Brief history

*2007/05/23 cont.c (for callcc)
*2007/05/25 Fiber impl. [ruby-dev:30827]
«2007/05/28 Fiber introduced into cont.c
*2007/08/25 Fix Fiber spec

Background: Callcc and Fiber on Ruby 1.9

* 2007/01 YARV was merged without “callcc”

* Biggest usage of “callcc” is for “Generator”
e Convert an internal iterator to an external iterator
e Usually one-shot continuation is required
— Coroutine is enough for this purpose
e Capturing continuation (callcc) is heavy operation
* Implementation is easy because we can refer Ruby 1.8 user-level
threads
* 2007/05/?7? | was introduced one paper something like generator
for (maybe) C# (so | began to consider about this feature)
* And | have a spare time at academic conference

2007/05/22 IRC log

(seeing a blog post)
00:56:49 <ko1> 9—&, callcc &AL L >F H

English: Umm, do you want “callcc”?

2007/05/23 cont.c

Revision 12380 - (show annotations)

Wed May 23 22:52:19 2007 UTC (10 years, 3 months ago) by ko1
File MIME type: text/plain

File size: 7826 byte(s)

* cont.c: support callcc which everyone love.
incomplete. please give me bug reports.

common.mk, 1nits.c, thread.c: ditto.

yarvcore.c: export thread mark().

varvcore.h: disable value cache option.

eval intern.h: set th get ruby level cfp to inline.

* o+ o *

2007/05/23 IRC log

(nobu pointed out there are several bugs on callcc)

12:15:36 <ko1> callcc 221 TLMW K
EN: callcc should be prohibited

12:15:52 <kol> CNAEY7ZE M5, FiberfEo7TzIE5M
R NGE—EME - TH
EN: Building callcc, I’'m thinking that making Fiber

IS more straightforward.

Fiber naming

* The name “Fiber” is from Windows API

* “A fiber is a unit of execution that must be manually
scheduled by the application. Fibers run in the context
of the threads that schedule them. Each thread can
schedule multiple fibers. In general, fibers do not
provide advantages over a well-designed
multithreaded application. However, using fibers can
make it easier to port aﬁplications that were designed
to schedule their own threads.”
https://msdn.microsoft.com/ja-
ip/library/windows/desktop/ms682661(v=vs.85).aspx

https://msdn.microsoft.com/ja-jp/library/windows/desktop/ms682661(v=vs.85).aspx

ruby-dev:30828] Re: Supporting Fiber
Naming of Fiber
“FiberTLMWALRIELVTL LD DY,

A MM HZUNNTT K43, ” by shugo

EN: “I'm ok the name of “Fiber”.
Somewhat cool.” by shugo

2007/05/28 Introduction
r13295, [ruby-dev:30827]

Revision 12395 - (show annotations)

Sun May 27 19:12:43 2007 UTC (10 years, 3 months ago) by ko1
File MIME type: text/plain

File size: 13295 byte(s)

* cont.c: support Fiber. Check test/ruby/test fiber.rb for detail.
Fiber is known as "Micro Thread", "Coroutine", and other terms.
At this time, only Fiberi#pass 1s supported to change context.
I want to know more suitable method name/API for Fiber (... do you
know more suitable class name instead of Fiber?) as "suspend/resume",
"call", "yield", "start/kick/stop/restart",

* eval.c, eval intern.h, thread.c, yarvcore.c, yarvcore.h: ditto.

-irst Fiber is Coroutine No parents/children

All routines are equivalent

_lber PdsSs Co-operative routines
fl = Fiber.new{ = Coroutine
ft2.pass; fZ2.pass} al el sl
f2 = Fiber.new/(o o B
I Pass _ | |
f3.pass} : > .
| | Pass _
f3 = Fiber.new/{ | T
£ Pass |
fl.pass} :pﬂs:
fl.pass A
, f1 f2 f3
NOTE: renamed to “Fiber#transfer” now L1 L L _

-iber#tpass - Fiber#tyield
ruby-dev:30847] Re: Supporting Fiber

Revision 12425 - (view) (annotate) - [select for diffs]
Modified Sat Jun 2 07:48:29 2007 UTC (10 years, 3 months ago) by ko1

File length: 13460 byte(s)
Diff to previous 12415 (colored)

* cont.c (Fiberifpass): rename to Fiber#yield. Block parameter
of fiber body receive first yield wvalues.
e.g.: Fiber.new{|x| p xX}.yileld(:0k) #=> :0k

* cont.c: rename rb context t#retval to rb context ti#value.

* test/ruby/test fiber.rb: ditto.

Matz’s idea

Coroutine or Semi-coroutine

e Coroutine is difficult

* You need to manage all transitions of Fibers

* Remember that most of languages have only “routine”
(not “co-") and it is easy to use.

* Most of case, semi-coroutine is easy and enough
* Exception handling

* On semi-croutine, exceptions are raised to the parent
Fiber(s)

* Maybe it has critical BUG issue.

* Coroutine is powerful
* No limitation (a bit old-language constructs)

[ruby-dev:31583] Fiber reviesed

Semi-coroutine (Fiber) and Coroutine (Fiber::Core)

Revision 13130 - (view) (annotate) - [select for diffs]

Modified Tue Aug 21 18:51:39 2007 UTC (10 years ago) by ko1
File length: 18279 byte(s)

Diff to previous 12946 (colored)

* cont.c: add Fiberf#resume and Fiber.yield.
and Fiber::Core class to realize Coroutine.
* include/ruby/intern.h: declare rb fiber yield(), rb fiber resume (),
* enumerator.c: use above apil.
* test/ruby/test fiber.rb: fix and add tests for above changes.

2007/08/25 IRC log

10:26:49 <ko1> K95 RAE F7JbFiber [Z Semi % Coroutine
BIEBELV DL <2ITT HRENLEDH

EN: Semi- and non-semi Coroutine may be
in one class undr big class principle
10:32:15 <ko1> ELVODITT, Lo L&LFIZTLTH S
EN: So that | merged it.

* It was just idea in two lines...

Fiber::Core was removed

Revision 13259 - (view) (annotate) - [select for diffs]

Modified Sat Aug 25 02:03:44 2007 UTC (10 years ago) by ko1
File length: 18025 byte(s)

Diff to previous 13237 (colored)

L S R R N o

cont.c: separate Continuation and Fiber from core.
ext/continuation/*, ext/fiber/*: ditto.

include/ruby/ruby.h: remove rb cFiber.

include/ruby/intern.h: add the rb fiber new() declaration.
enumerator.c (next init): fix to use rb fiber new().
teSt/ruby/test_enumerator.rb: remove next? tests.
test/ruby/test continuation.rb: add a require 'continuation'.
test/ruby/test fiber.rb: add a require 'fiber'.

Commit message does not work well...

Final specification of Fiber

* Semi-coroutine
* Fiber#fresume and Fiber.yield resume

* Make parent and child relationship (tree) o double resume
1hi child/paren i ibited
* Prohibit double resume (child/parent) |

resume

 Coroutine
e Fiber#ttransfer

* Prohibt to call semi-coroutine methods
on “transfer”ed fiber (coroutine)

Implementation of Fibers

Implementation history

(1) 2007/05 Copy all machine stack
(2) 2010/05 FIBER USE NATIVE

(3) 2017/09 Switch only pointer

Fiber context representation

Context:

* Thread states (current program counter, etc)
\/M stack
* Machine stack

*“Context switching” means exchange
contexts

Fiber implementation
2007 (1) Copy machine stack

*Store and restore “Context” by copying
machine stack

Store machine
/ stack of fib1
Switch from

machine

running fibl to ashine
suspended fib2 T, [
Restore stack of fib2

Fiber implementation

2007 (1) Copy machine stack

* Good

e Same idea of a Ruby 1.8
user-level thread code

* Not so many memory usage
* Almost portable

*Bad
* Copy time is relative to
stack-depth (O(N))

machine
stack area

Store machine
/ stack of fib1

——

Restore

machine
stack of fib2

Fiber implementation
2010 (2) Use Native support

*Switch machine stack by system APIs
*Supported APIs
* POSIX makecontext/setcontext
* Win32 Fiber API
* Machine stack exchange is only pointer
exchange (O(1))

*Implemented by Mr. Shiba (with me)

Time ratio (current/proposed)

FaA W,

18
16
14
12 == Windows
10 == Linux32
Linux64
3 s S0laris
i Mac
b
a
2
0

o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Count of recursive call (== stack depth)
B 5 Fiber a7 %X M AL v FOXRFv—IFR
“A Fast Fiber Implementation for Ruby 1.9”

“Rubyl.9 T &R FiberD K",
E51ETAT ST R LFIRE, pp.21--28 (2010).

Fiber implementation
2017 (3) More lightweight switching

*Context exchange

*[copy] Thread states
*[ptr exchange] VM stack
*[ptr exchange] Machine stack

*“setcontext” calls sigprocmask
* Ruby threads/fibers use same signal mask

— Useless system call

Fiber implementation
2017 (3) More lightweight switching

*Context exchange
*[copy->ptr exchange] Thread states

HeEd lptr exchange

fibl

/ fib1
context

=

Before After

Fiber implementation
2017 (3) More lightweight switching

* [Futurework] Use custom “setcontext” excludes
sigprocmask

e setcontext issues “sigprocmask” system call to restore
signal mask, but MRI doesn’t change sighalmask so
that it is completely useless.

*This idea is also proposed at
https://rethinkdb.com/blog/making-coroutines-fast/

e License?

https://rethinkdb.com/blog/making-coroutines-fast/

Fiber implementation
2017 (3) More lightweight switching

Performance

vm?2_fiber switch*

2.4

2.35
o 2.3
Ruby 2.4.1 Modified

Q
 2.25
2.2
2.15

Fiber implementation
2017 (3) More lightweight switching

Performance

5%

. , . |
vm?2_fiber switch* improvement!

2.36

Ruby 2.4.1 Modified

Fiber implementation
2017 (3) More lightweight switching

*Memory size / fiber

30% reduced!
sizeof(rb_fiber t)
2500 2264
2000
§ 1500
& 1000
500

1616

Ruby 2.4.1 Modified

Fiber implementation
2017 (3) More lightweight switching

*Memory size / fiber

700,000
600,000
500,000

§ 400,000

@ 300,000
200,000
100,000

0

Ruby 2.4.1 Modified
M sizeof(rb_fiber t) MW VM stack ™ Machine stack

2017 (3) More lightweight switching
Not a valuable work?

| spent this hack 2 or 3 months because of
code complicity.

*This work (hopefully) will be a basis of Guild
work (we need to pass context information
for each APIs like mrb state on mruby)

Auto-Fiber proposal

Auto Fiber proposal

*“Fiber” enables writing scheduler by Ruby
programmer

* Maybe Seki-san introduce one example

*Why doesn’t an interpreter support it
natively? - Auto Fiber proposal

Auto Fiber proposal

https://bugs.ruby-lang.org/issues/13618

Feature #13618

;1“;;;{'; [PATCH] auto fiber schedule for rb_wait_for_single_fd and rb_waitpid
.:..:x.t* normalperson (Eric Wong) 7°4+- AR END. 45 @il CE 4.

¢ A
AT—RA: Open
B Normal
3 -

MR A—030:

[ruby-core:81492]

https://bugs.ruby-lang.org/issues/13618

Auto Fiber proposal

Automatic schedule on I/O blocking

* Support Fiber scheduler
natively

e Don’t need to return
scheduler

* Switch Fibers on all blocking
/0 (and other ops)

* No need to change existing
programs

scheduler

]
i enque worker 1 a

—

' start (#resume)

workerl

nd 2

check 10(x) ready : :
and not x is not readylj € readix) { yield)

Y

| start (#resume)

N

read(y) (.yield)

check 10(x, y) ready !
andyisr '

e
-

\ read_result(y) (#

Y

Comparison
—m

Suspend/contin Yes

ue

Switch on timer Yes No No

Switch on I/O b. Yes No Yes
Synchronization Required Not required Required
Specify next No Yes No
Performance: Creation Hegyy Lightweight Lightweight

Performance: Switch | jghtweight Lightweight Lightweight

Advantage and Disadvantage

* Advantage
* Don’t need to modify existing programs
* Lightweight as a Fiber
e Safer than Threads (no preemption)

*Disadvantage

* Introduce “non-deterministic” dangers same as
Thread programs

* Non atomic operations can intercept accidentally.

Change the name...?

About this talk

*Behavior of Fiber
*History of Fiber
*Implementation of Fiber
* Auto Fiber proposal

Thank you for your attention

Koichi Sasada
<kol@cookpad.com>

cookpad

