
The Art of Execution Control
for Ruby's Debugger

Koichi Sasada

Cookpad Inc.

RubyKaigi Takeout 2021 1

About this talk

• Introduce “debug.gem” https://github.com/ruby/debug
• Newly created debugger for Ruby 2.6 and later

• Will be bundled with Ruby 3.1 (Dec/2021)

• Demonstrate “debug.gem”
• Basic usage instructions

• Advanced features

• Show “How to make a debugger” on Ruby
• Introduction of recent features of TracePoint

• Some techniques for a debugger

2

https://github.com/ruby/debug

About Koichi Sasada

• Ruby interpreter developer employed by
Cookpad Inc. (2017-) with @mame
• YARV (Ruby 1.9-)

• Generational/Incremental GC (Ruby 2.1-)

• Ractor (Ruby 3.0-)

• …

• Ruby Association Director (2012-)
• 2021 Call for Grant Proposals

3

https://www.ruby.or.jp/en/news/20210812

What is a debugger?

• A tool to help debugging
• To investigate the cause of problems

• To know the program live state

• To understand the program

• Basic features
• CONTROL execution

• STOP at breakpoints

• STEP forward to the next line

• …

• QUERY program status

4

Ruby’s existing debuggers

• lib/debug.rb
• ruby -r debug script.rb

• Standard library, but maybe nobody uses it

• byebug
• byebug script.rb

• debase / ruby-debug-ide
• Used by IDE (rubymine, vscode, …)

5

Why create yet another debugger?

• Performance
• Existing debuggers slow with breakpoints

• Recent TracePoint API support line-specific

• Native support for remote execution and IDE

• Native support for Ractors

• (and I like to make this kind of tools)

6

How to use a debugger?

• Set breakpoints.

• Run a program with a debugger.

• At the breakpoint, enter the debugger console.

• Use debug commands.
• Control execution

• Move to next line.

• Continue the execution and stop at the next breakpoint.

• Set another breakpoint (e.g. stop when Exception is raised).

• Query the program status (e.g. see the local variables of another frame).

• Change the configuration (e.g. change coloring option).

7

Introduction of
“debug.gem”

8

Demo: Basic usage

9

Demo: VSCode integration

• Implement DAP (Debug Adapter Protocol) to communicate
IDEs (VSCode, …)

10

11

Start debugging with debug.gem

• Use “rdbg” command
• like traditional debuggers such as GDB/LLDB

• rdbg script.rb

• rdbg –c rake test

• rdbg --open … # open remote debugging port

• Require “debug*” files
• like old lib/debug.rb

• require “debug” == “rdbg --nonstop --no-sigint-hook”

• require “debug/start” == “rdbg”

• require “debug/open” == “rdbg --open”

• Push IDE’s button
12

Set a breakpoint

• Use “break” command at the beginning
• break 10 # break at 10 line on current file
• break foo.rb:10 # break at the location
• break MyClass#my_method # break at the method
• break … if foo == bar # break if foo == bar
• catch FooException # break at FooException is raised

• Use “binding.break” method in your program
• You can insert it like “binding.irb”
• “binding.b” for short
• You can write debug command in your program with

binding.b do: “debug_command”

13

Set a breakpoint (cont.)

• Use “break” command at the beginning
• Do not need to modify the source code

• Cooperation with IDE/Editor (e.g. set BP with F9 on VSCode)

• Use “binding.break” method in your program
• Straight forward for some Ruby users

• Control debugger from debuggee

14

Demo: Combination with program and debugger
binding.break is a breakpoint like binding.irb

enable “trace line” feature while bar()

def foo

binding.break do: ‘trace line’

bar()

biding.break do: ‘trace off line’

end

15

Advanced features

• Remote debugging

• Postmortem debugging

• Event tracing

• Record and replay debugging

16

Demo: Remote debugging
Connect over network
• Easy to open remote debug port and attach

• rdbg --open script.rb
• rdbg -O script.rb

• require ‘debug/open’ # in script

• rdbg --attach
• rdbg -A

• Debug deamon like process

• Query the process status like sigdump but more details

17

Demo: Postmortem debugging
Debug dead Ruby process

19

Demo: Event tracing
Show interesting events

20

Demo: Record and replay debugging
Backward stepping execution

21

22

Performance
def fib n

if n < 0

raise # breakpoint here!!

elsif n<2

n

else

fib(n-1)+fib(n-2)

end

end

require 'benchmark'

Benchmark.bm{|x|

x.report{ fib(35) }

}

Without
breakpoint

With
breakpoint

ruby 0.93 N/A

rdbg (debug.gem) 0.92 0.92

byebug 1.23 75.15

RubyMine 0.97 22.66

old lib/debug.rb 221.88 285.99

23

ruby 3.0.1p64
rdbg 1.0.0.rc2
byebug 11.1.3
RubyMine 2021.2.1 w/ debase 0.2.5.beta2

Intel(R) Core(TM) i7-10810U CPU, Windows 10, WSL2

Execution time (sec)

How to make a debugger
on Ruby?

24

Key feature: TracePoint

• “TracePoint” hooks many events in Ruby
• Replacement of “set_trace_func” from Ruby 1.9

• “line”, “call”, “return”, …

• Set TracePoint at the specific location (from Ruby 2.6)
• “enable(target: …, target_line: …)”

• “target” is specified by a Method/Proc/ISeq (bytecode)

def foo a

b = a + 1 # line 2

b # line 3

end

TracePoint.new(:line){|tp| p tp

}.enable(target: method(:foo), target_line: 3){

foo 10

} #=> #<TracePoint:line t.rb:3 in `foo'> 25

You can implement a line breakpoint …?

• Debug command: break file:line
• Set a breakpoint at file:line

• Question: How to collect the code for “target:”?

• Answer: Use ObjectSpace to collect all ISeqs (bytecode)

26

How to implement step execution?

• Use “TracePoint” without “#enable(target:…)”
• “#enable” method without “target:” keyword will hook at any hook

points

• Set “:line” event and trap the execution

27

How to implement capturing frames
information?
• Use internal API “rb_debug_inspector_*”

• You can use it from Ruby with “debug_inspector.gem”.

• With C-extension we can control the capturing target.

28

How to support Threads/Ractors?

• We can’t share the objects between Ractors

→ Existing debugger can’t support Ractors.

• Ractor programming is hard

→ Debugger can be important for ractor debugging

29

Session management thread and
communication

Session
manager
thread

Running thread

Running thread

Running thread

Suspended on a bp

SuspendRemote UI
thread

(if needed)

Remote
console

Debuggee process

30

Session management thread and
communication

Session
manager
thread

Running thread

Running thread

Running thread

Suspended on a bp

Suspend

Debuggee process

main Ractor

Running thread

Ractor #2

Running thread

Ractor #3

But not available now…

Suspend

31

Acknowledgements

• Naoto Ono san (@ono-max) implements test-frameworks for
the debugger. It is part of his GSoC project.

• Stan Lo san (@st0012) submits tremendous patches to
improve the debugger usability such as coloring and so on
based on his debugger trials. Also, he makes many tests for
the debugger.

• Ruby committers helps me to design and implement the
debugger

32

Conclusion

• “debug.gem” is newly created Ruby debugger from scratch
• Useful features on modern UI.

• No performance penalties.

• “gem install debug” now!
• And give us your feedback.

• I love to introduce the debugger on your meetup, please contact me.

• Ruby already has useful features like “TracePoint” for the
debugger.

• Ractor supports is not available, now working on.

33

