
“Ractor” reconsidered

Koichi Sasada

<ko1@cookpad.com>

or 2nd progress report of MaNy projects

RubyKaigi 2023

About this talk

• “Ractor” is not used maybe because …
• Programming model

• Memory model (object sharing model)
• Actor like API

• Eco-system
• Implementation

• Code quality
• Performance

•Performance improvements
• New “Selector” API
• Ractors on M:N Scheduler (MaNy project)
• Ractor local GC

📌 Ractor is introduced from Ruby 3.0

About Koichi Sasada

• Ruby interpreter developer employed by
Cookpad Inc. (2017~) with @mame
• YARV (Ruby 1.9~)

• Generational/Incremental GC (Ruby 2.1~)

• Ractor (Ruby 3.0~)

• debug.gem (Ruby 3.1~)

• …

• Ruby Association Director (2012~)

3

“Ractor” is

• introduced from Ruby 3.0

•designed to enable
•parallel computing on Ruby for more
performance on multi-cores 😄
• It can make faster applications

• robust concurrent programming 😄
• No bugs because of object sharing

The current status of “Ractor”

•Not used yet widely 😢

•maybe because of several
difficulties/issues to use

Difficulties and Issues of “Ractor”

•Programming model (API)
• Memory model (object sharing model)
• Actor like API

•Eco-system

• Implementation issues
• Low code quality
• Low performance

Difficulty – Programming model
Memory model (object sharing model)
• Isolated object spaces … for most of objects

• Most of objects: Unshareable objects are isolated
• A few special objects: Shareable objects

• A few special objects
• Classes/Modules
• Immutable objects (frozen objects which only refer to immutable objects)
• Other special objects

• To keep this isolations, there are limitations in Ruby
• For example, constants couldn’t keep unshareable objects.

• NOT completely isolated (separated) object spaces like
multiple processes

Difficulty – Programming model
Actor like message passing API

•Hybrid object passing API
• Traditional Actor style with send/receive methods
• Rendezvous style with yield/take methods

•Wait for multiple events by Ractor.select

•Copy/Move semantics to keep object isolation
• send by reference for shareable objects
• send by copy
• send by move (source ractor can’t touch it)

Issue – Eco-system

•To keep object space isolation, Ractors
introduces strict limitations
• Constants can refer unshareable objects, no global
variables are allowed, …

•Many existing libraries doesn’t work without
modifications ≒ lack of eco-system

•Some of programs should be redesign for Ractors

Issue – Implementation
Low code quality

• CI fails every few days (about 1/10,000 trials)
• https://dev.to/ko1/personal-efforts-to-improve-the-quality-of-ruby-interpreter-2lcl

• Difficult to implementation
•😀 Send/receive style is easy because we only need to

lock a receiver.

•😥 Rendezvous style is difficult because we need to lock
sender and receiver ractors = need to manage 2 locks =
easy to introduce deadlock

•😭 Making an event mediator “Ractor.select” is difficult
because we need to synchronize multiple ractors

https://dev.to/ko1/personal-efforts-to-improve-the-quality-of-ruby-interpreter-2lcl

Issue – Implementation
Low performance

•Poor performance because of implementation
• It can be even slower than without Ractor because
of additional overhead

Takeuchi function on 4 Ractors

def tarai(x, y, z) =

x <= y ? y : tarai(tarai(x-1, y, z),

tarai(y-1, z, x),

tarai(z-1, x, y))

require 'benchmark'

Benchmark.bm do |x|

sequential version

x.report('seq'){ 4.times{ tarai(14, 7, 0) } }

parallel version

x.report('par'){

4.times.map do

Ractor.new { tarai(14, 7, 0) }

end.each(&:take)

}

end

user system total real

seq 53.674715 0.001315 53.676030 (53.676282)

par 57.916671 0.000000 57.916671 (14.544515)

x 3.7 faster!! 😆

Repeating object allocations on 4 Ractors
N = 10_000_000

def make = N.times{ ["", {}, []] }

require 'benchmark’

Benchmark.bm do |x|

sequential version

x.report('seq'){ 4.times { make } }

parallel version

x.report('par'){

4.times.map do

Ractor.new{ make }

end.each(&:take)

}

end

user system total real

seq 3.824015 0.020009 3.844024 (3.844017)

par 17.296987 0.733804 18.030791 (7.850200)

x 2.0 slower!!! 😫

Issue – Implementation
Low performance
•Overhead is because …

• Stop all ractors (barrier synchronization) on GC
• Stop “all” ractors (not only “running” ractors) and GC for

whole heap on each GC events
• Ractors are almost isolated semantically but share same object

space

• We couldn't utilize “isolated” nature

• Using native threads (pthreads, …) per Ractor
• increases system calls (and consumes system resources)
• can not make flexible ractor scheduling

• Ractor.select(*rs) needs O(n) like “select()”
• …

Issue – Implementation
Performance

•The purpose of using Ractors is to improve
application’s performance

•However, the current implementation does not
meet this expectation 😥

Current situation

Low quality
and performance

Nobody try it
No feedback to the API
No eco-system growth

😥

Future expected situation

Better quality
and performance

Somebody try it
Feedback to the API
Eco-system growth

😁

The first area
to be improved

Recent improvements

Improve code quality

• Difficulties
•😥 Rendezvous style is difficult

• Needs two locks for yielding and taking ractors

•😭 Making an event mediator “Ractor.select” is more difficult

• We've rewritten all Ractor's synchronization code
• Rewrite Ractor synchronization mechanism #7371

• Redesign rendezvous protocol and mediation protocol

•😊 And (if I didn’t miss) we don’t have any CI failures!!

https://github.com/ruby/ruby/pull/7371

Improve performance
Ractor.select() functionality

•😥 Ractor.select needs O(n)

• Introduce “Ractor::Selector” API
• Rewrite Ractor synchronization mechanism #7371
• Pre-registration API (register at first)
•🙂 The waiting cost can become O(1)

• but O(n) on current implementation 😅

• (not accepted by Matz though😅)

https://github.com/ruby/ruby/pull/7371

Ractor::Selector

n.times do

wait and it takes

O(n) each time

Ractor.select(

r1,

r2,

r3, …)

end

prepare

s = Ractor::Selector.new(

r1, r2)

s.add(r3)

…

wait

n.times do

O(1) (in theory)

s.wait

end

(not accepted by Matz though😅)

Order is important to wait for massive number of ractors

Performance improvement
MaNy project

•😥 Poor performance because of depending on
native threads

•😄 Introduce own M:N scheduler

→ Ractor on MaNy project
• MaNy project: Making *MaNy* threads on Ruby
(RubyKaigi 2022)
• Last year I only introduced about M:N scheduler with

Ruby’s threads, and now Ractor is also supported

https://rubykaigi.org/2022/presentations/ko1.html

CPU
Core

MaNy project
Thread system implementation techniques

📗 Study in computer science/OS area
📌NT: Native thread or kernel thread

NT

RT

CPU
Core

RT RT

NT

RT

CPU
Core

RT RT

NT

RT

CPU
Core

RT RT

NT NT

CPU
Core

NT

CPU
Core

1:N (Ruby ~1.8) 1:1 (Ruby 1.9~)
M:N

(M = 2)
User

OS/Lib

H/W

How to handle N=3 Ruby threads/ractors (RTs) on 2 CPU cores?

Quoted from RubyKaigi 2022 slides (modified)

1:1 model
Most simplified technique

• 1 native thread (NT) per Ruby a thread / ractor
• Ruby 1.9~ (has GVL limitation. This page eliminates it)

•😀 Simple, easy to handle blocking operations (system does)

•😀 Can run in parallel on multi-core systems

•😨 More overhead (compare with 1:N, in theory)

•😨 Less controllable (only native thread system schedules)

NT1

R1

NT2
R2

NT3 R3

Create R2

Create R3

🚫 24

Quoted from RubyKaigi 2022 slides (modified)

M:N Ractor level scheduling (M=2)

NT1

R1

NT2

R2

R3

R1 creates R2 and run on NT2
GRQ: []

GRQ: []

GRQ: [R3]

R1 creates R3
Switch to R3 by time slice

R1

Switch to R1 GRQ: []

{I/O blocking}
→ No ready threads on R2

📌 Ractor R1, R2, R3 have 1 thread, respectively.
💪 R1 runs on NT1 and NT2 (M:N scheduler)

GRQ: [R1]

Quoted from RubyKaigi 2022 slides

M:N scheduler
Technical topics
• Design our own scheduler two level scheduler

• Thread level scheduler and Ractor level scheduler
• Rebirth timer thread to manage “waiting”

• Redefine I/O waiting and canceling protocol
• Redefine sleeping protocol

• Redefine signal delivering protocol
• Dynamic native threads numbers
• Supports dedicated (1:1) native threads for compatibility for C-extensions
• Robust canceling code on parallel execution
• Introduce a lazy queuing scheduling technique for performance
• Rewrite ractor synchronization code with the scheduler
• Rewrite barrier implementation for ractors with the scheduler
• Issue from thread-local storage

• https://twitter.com/_ko1/status/1650385648006873088

• Current code is here: https://github.com/ko1/ruby/tree/many2
• Complete almost tests in ruby/ruby

https://twitter.com/_ko1/status/1650385648006873088
https://github.com/ko1/ruby/tree/many2

Evaluation
Ractor creation/joining on M:N scheduler

Time (sec) on GC.enable Time (sec) on GC.disable

Threads (master) 0.22 0.21

Threads (MaNy) 0.08 0.06

Ractors (master) 4.88 0.76

Ractors (MaNy) 2.35 0.55

Ractors (MaNy, MAX_PROC=1) 1.09 0.41

📌 Creating 10,000 threads or ractors and wait all of terminations
📌 MAX_PROC: Maximum native thread number (default: 8)
📌 Machine and VM stack is limited to minimum size
📌 https://gist.github.com/ko1/b9222243ed246d782ab259252da15ad1

x 2.6

x 2.1
x 4.5

x 13.6

Should be same in theory
Environment:
AMD Ryzen 9 5900HX (8 cores, 16 H/W threads)
Ubuntu 22.04
gcc version 11.3.0
ruby 3.3.0dev (2023-04-28T11:29:02Z master 7ba37cb7aa)

❓😀

https://gist.github.com/ko1/b9222243ed246d782ab259252da15ad1

Evaluation
Ring example on M:N scheduler

•Prepare n Ractors (/threads) ordered sequentially

•Pass a message to the next Ractor (/thread)
R0

R1

R2… many ractors …

msg

28

Rn

Quoted from RubyKaigi 2022 slides (modified)

Evaluation
Ring example

Time (sec)

Threads (master) 969.55

Threads (MaNy) 9.20

Ractors (master) 166.52

Ractors (MaNy) 14.22

Ractors (MaNy, MAX_PROC=1) 7.38

📌Making 1 ring by 10,000 threads/ractors and 1,000 times message passings = 10M passings
📌Time of making threads/ractors is excluded.
📌Benchmark code: https://gist.github.com/ko1/ac325a785ae292540bd99f141ad55383

x 105.4

x 11.7
x 22.6

https://gist.github.com/ko1/ac325a785ae292540bd99f141ad55383

Future work

Further performance improvement
Ractor local GC

•Ractor’s object space is almost separated with
other ractors’ object space

→ Run GC separately
• Do not need to stop all ractors
• Run GC in parallel

R1 R2

R R

Further performance improvement
Ractor local GC

•Problem is “There are several shared shareable
objects” between ractors

→ Distributed GC (with a few whole GC)
Ractor local GC is ongoing project with GSoC 2022 contributor Rohit Menon

R1 R2

R R

About this talk

• “Ractor” is not used maybe because …
• Programming model

• Memory model (object sharing model)
• Actor like API

• Eco-system
• Implementation

• Code quality
• Performance

•Performance improvements
• New “Selector” API
• Ractors on M:N Scheduler (MaNy project)
• Ractor local GC

	スライド 1: “Ractor” reconsidered
	スライド 2: About this talk
	スライド 3: About Koichi Sasada
	スライド 4: “Ractor” is
	スライド 5: The current status of “Ractor”
	スライド 6: Difficulties and Issues of “Ractor”
	スライド 7: Difficulty – Programming model Memory model (object sharing model)
	スライド 8: Difficulty – Programming model Actor like message passing API
	スライド 9: Issue – Eco-system
	スライド 10: Issue – Implementation Low code quality
	スライド 11: Issue – Implementation Low performance
	スライド 12: Takeuchi function on 4 Ractors
	スライド 13: Repeating object allocations on 4 Ractors
	スライド 14: Issue – Implementation Low performance
	スライド 15: Issue – Implementation Performance
	スライド 16: Current situation
	スライド 17: Future expected situation
	スライド 18: Recent improvements
	スライド 19: Improve code quality
	スライド 20: Improve performance Ractor.select() functionality
	スライド 21: Ractor::Selector
	スライド 22: Performance improvement MaNy project
	スライド 23: MaNy project Thread system implementation techniques
	スライド 24: 1:1 model Most simplified technique
	スライド 25: M:N Ractor level scheduling (M=2)
	スライド 26: M:N scheduler Technical topics
	スライド 27: Evaluation Ractor creation/joining on M:N scheduler
	スライド 28: Evaluation Ring example on M:N scheduler
	スライド 29: Evaluation Ring example
	スライド 30: Future work
	スライド 31: Further performance improvement Ractor local GC
	スライド 32: Further performance improvement Ractor local GC
	スライド 33: About this talk

