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Point of This Presentation
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Merging YARV is not a goal, 
but a start

YARV: Yet Another RubyVM
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Notice
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I canʼt speak English well, so I write down 
all things what I want to say.

Do you get ready for opera glasses?
Unfortunately, some slides are written in 
Japanese

You can ask questions with
Japanese, C, Ruby, …, or slow/short English.
“How to impl. Ruby”, not “How to use Ruby”
“x50” is too big mouth

Maybe x20



Self Introduction
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Koichi (given name) Sasada (family name)
ささだ（family name) こういち (given name)
笹⽥ (family name) 耕⼀ (given name)

Lecturer @ University of Tokyo (Feb. 2008-)
Only VM developer

Donʼt have compatibility with Matz
Please call me “ko-i-chi”



Agenda
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History of YARV
Advanced VM Topics

Performance
Parallel Thread Execution
Embedding Float Value
JIT Compiler
Pre-Compiler

“Ruby to Compiled file” Compiler
“Ruby to C” Compiler

New Feature
Multi-VM Creation
Customizable Ruby Core
Debug/Profile support feature

Summary



History of YARV
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4 Years
1, Jan 2004 Project Start
2004-2005 VM Core, Optimization

Supported by MITO youth Project (IPA)
2005-2006 Thread, etc

Supported by MITO Project (IPA)
1, Apr 2006 Got a Job (Assistant on U-Tokyo)

2006-2007 etc, etc
Supported by MITO Project (IPA)
25, Dec 2007 Got a Ph.D

25, Dec 2007 (GMT) 1.9 Release



FYI
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Ruby 2.0 – since 2003 3/31
Perl 6 – since 2003 4/1



YARV Policy
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Performance
Speed, Speed, Speed
Applied many many many optimization Tech.

Compatibility
C extension API
Not language compatibility

Auto-generation
VM description to Concrete VM source code



YARV: Performance Improvement
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VM Generator

VM Instrunction
Description

Compiler
(Optimizer)

Virtual Machine

Verifier

Dis-assembler
Assembler

Documents

C SourceAOT Compiler

Future work



Enemies of YARV
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Ruby Specification ≒ Matz
Ruby Spec kills many optimization techs
We love “Dynamic” “Meta” Programming, 
but…

Changing Spec is also Nightmare
Portability

We canʼt use system depending techs.
Rivals (not Enemy)

Jruby, Rubinius, IronRuby, …
Peggy work on my Job



Evaluation: Improve case
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Max: x20



Evaluation: Macro-Benchmark
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Evaluation:
Compare with Other Languages
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Limited by 
Bignum

Caclulation

Faster than
Other VMs



Evaluation: VM doesn’t affect
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Overhead
is not in VM



Advanced VM Topics
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Performance
Parallel Thread Execution
Embedding Float Value
JIT Compiler
Pre-Compiler

“Ruby to Compiled file” Compiler
“Ruby to C” Compiler

New Feature
Multi-VM Creation
Customizable Ruby Core
Debug/Profile support feature



Ph.D Thesis
Efficient Implementation of Ruby Virtual Machine
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Implement a High-Speed
Ruby Interpreter

Introduce VM
↓

YARV
(Merged into Ruby 1.9)

Parallel Ruby Execution
↓

Parallel Thread Execution
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Parallel Thread Execution
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Using Native Thread
Get rid of Giant VM Lock



Method (1)
Ruby Thread and Native Thread (1:N) a.k.a -1.8 Ruby model
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Ruby (YARV)

Native Thread
System S/W

Processor(s)
PE PE PE・・・

H/W

RT RT RT

NT

Thread SchedulerS/W

PE: Processor Element, UL: User Level, KL: Kernel Level

・・・

・・・



Method (2)
Ruby Thread and Native Thread (1:1)
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Ruby (YARV)

Native Thread
System S/W

Processor(s)
PE PE PE・・・

H/W

RT RT RT

NT NT NT

Thread SchedulerS/W

PE: Processor Element, UL: User Level, KL: Kernel Level

・・・

・・・



Method (3)
Ruby Thread and Native Thread (N:M)
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Ruby (YARV)

Native Thread
System S/W

Processor(s)
PE PE PE・・・

H/W

RT RT RT

NT NT NT

Thread SchedulerS/W

PE: Processor Element, UL: User Level, KL: Kernel Level

・・・

・・・

RT



Discussion
Ruby Thread and Native Thread
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Mapping with Native Thread and Ruby 
Thread

Accept 1:1 model to make Ruby Simple
Depend Performance on Native Thread Libraries

Pros Cons

1:N Lightweight Thread 
Control

Can’t run in Parallel

1:1 Run in Parallel
Simple, Portable

Heavyweight Thread 
Control (Creation, etc)

N:M Lightweight Thread 
Control, Run in Parallel

Complication, Non-
Portable



Accepted Method:
Ruby Thread and Native Thread (1:1) ← Ruby 1.9/YARV
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Ruby (YARV)

Native Thread
System S/W

Processor(s)
PE PE PE・・・

H/W

RT RT RT

NT NT NT

Thread SchedulerS/W

PE: Processor Element, UL: User Level, KL: Kernel Level

・・・

・・・



Introduction of Mutual Exclusion
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Needed at
1. Global VM Management Data
2. Object Management / GC
3. Inline Cache
4. Thread Unsafe “C” methods



(1) Global VM Management Data
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Managed by Table
Variable Name → Value
Method Name → Method Body
…

Introduce Synchronization at Table 
Operation

Get/Set
Easy



(2) Object Management/GC
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Synchronous GC



(2) Object Management
Lock-Free Object Allocation with Thread Local Free List
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(2) Object Management
Lock-Free Object Allocation with Thread Local Free List



(3) Inline Cache
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Using by VM performance
Embed Cache Entries in Instruction Sequence

Sync. For Coherence -> Performance Problem
Key and Value of Cache Entry

Sync.-Free Inline Cache
Cache Miss -> Make a new entry

GC will clean-up old cache entries
Increase Miss-Penalty, but Good for average



(4) Thread Unsafe “C” Methods
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CRuby has many many methods 
implemented by “C”

All of them are “Thread Unsafe”
Because -1.8 doesnʼt support parallelization

Basic Policy: Using Giant-Lock
Invoke old “C” method with Giant-Lock Acquire
Re-write C methods as Thread Safe, this 
method will be Giant-Lock free
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Problem
Conflict of Giant-Lock Acquirement

GL Conflict → 
Performance Decrement
Limit Running CPU

Check GL Conflict Periodically
Limit their CPU
Using pthread_setaffinity_np on NTPL

SetThreadAffinityMask on Windows



Running CPU Limitation
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Ruby (YARV)

Native Thread
System S/W

Processor(s)
PE PE PE・・・

H/W

RT1 RT2 RTn

NT NT NT

S/W

PE: Processor Element, UL: User Level, KL: Kernel Level

・・・

・・・

Thread Scheduler

GL
Conflict
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Ruby (YARV)

Native Thread
System S/W

Processor(s)
PE PE PE・・・

H/W

RT1 RT2 RTn

NT NT NT

S/W

PE: Processor Element, UL: User Level, KL: Kernel Level

・・・

・・・

Thread Scheduler

GL
Conflict

Running CPU Limitation
Force to run RT1 and

RT2 in Serial
→Avoid Conflict



Performance Evaluation
Environment
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Evaluation Environment
CPU: Intel Xeon CPU E5335 2.0GHz 
Quad core x 2 = 8 core
OS: GNU/Linux 2.6.18 x86_64 SMP / NPTL
Compiler: gcc version 4.1.2

Ruby
ruby 1.8.6 (2007-11-02) [x86_64-linux]

YARV Optimization
All except Unification, Stack caching



Evaluation
Thread control Primitives
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Creation, Switch: 0.1M, Mutual Exclusion: 1M
Low Performance for Creation/Join because of Native Thread

Native Thread Overhead

Memory Allocation  Overhead

High Performance Synchronization
High Performance Thread Context Switch

Independent Stack-Depth (1.8 depends on depth)

Ruby (sec) YARV (sec) Ratio NTPL (sec)
Creation 0.89 1.95 0.46 0.59

Mutual Exclusion 0.67 0.38 1.76 -
Switch (depth:1) 6.01 0.06 100.17 -
Switch (depth:16) 11.55 0.06 192.5 -



Evaluation
Result (Micro-benchmark)
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•fib: fib(N) (Make new Thread if N>30)
•hetero: fib + concat (1 thread)
•mandel: Mandelbrot (Big GC overhead)
•concat: String Concatenate (No Parallelism)



Evaluation
Result (Micro-benchmark)
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x 7.4
w/8 Cores



CPU Limitation
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No Limitation

Using Limitation

x3.4



Parallel Thread Execution
Problem
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Unsafe “Old C” methods
Replacing all is not easy task
Man Power Problem?

Programming Model
Is Parallel Thread Application easy to write?

Ruby 1.9
1.9 support Native Thread
1.9 doesnʼt support Parallel Thread Execution



Embedded Float Representation
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Float object is not immediate type
This means that Float is “allocated” each time
Ex) Fixnum, Symbol, etc

Half execution time of Float calculation is 
Memory management



Toy-Program
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i = 0; f = 0.0

while i<30_000_000
i += 1

f += 0.1; f -= 0.1

f += 0.1; f -= 0.1

f += 0.1; f -= 0.1

f += 0.1; f -= 0.1

end



List of Execution Time
Toy-Program
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Using OProfile
Linux 2.6 (x86_64), Xeon

Ruby 1.9.0

Memory
Management

Float Calc



Embed Float Object as Fixnum
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Solution: Embed 64bit Float value to 64bit 
CPU Pointer type!



Review
IEEE 754 Double Precision Representation
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b63 b62-b52 b51-b0

m: Mantissa (52bit)e: exponential (11bit)
s: Sign (1 bit)

64bit Double



Discussion
How to Embed 64 bit Double?
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VALUE embed Object doesnʼt need 
memory overhead
64bit CPU have 64 bit pointer type
→ Use 64 bit CPU
At least we need 1 bit for TAG bit

From Mantissa?
Decrease Precision

From Exponential?
Decrease  Representation Range



Proposal
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From Exponential
But Store Float in Heap if it is Out of Range
→ Save a Range and Precision

Often used 01000000000b〜10111111111b
（ ）

If Float is out of range, alloc from Heap
Float Out of this Range is Rare Number on 
Numeric Application -> Practical Solution



Proposal
Real Program
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1) Check the Range of “e” (512〜1535)
2) IEEE745 double -> Float (Encoding)
3) Float -> IEEE745 double (Decoding)



Proposal
Float Representation with Tag

49

e: 10000000000b〜01111111111b
Note that if “b62 != b61”, we can embed.
On Ruby, Tag is at LSB
→ Left Rotate 3bit
b63 b62 b61 b60 … b0 → 3 bit rotate
b60 … b0 b63 b62 b61



Proposal
Real Encoding Code
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VALUE rb_float_new(double dbl) {
VALUE v1 = BIT_DOUBLE2VALUE(dbl);
VALUE v2 = BIT_ROTL(v1, 3);
if ((v2 + 1) & 0x02) // check lower 2 bits
return v2 | 0x01;     // Embed tag

else {
if (dbl == 0) // 0.0
return ruby_float_zero;

else              // alloc from Heap
return rb_float_new_in_heap(dbl);

}}



Proposal
Real Decode Code
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double RFLOAT_VALUE(VALUE v) {
if (v & 1) {
VALUE v1 = v ^ ((v >> 1) & 1);
VALUE v2 = BIT_ROTR(v1, 3);
return BIT_VALUE2DOUBLE(v2);

}
else
return RFLOAT(v)->float_value;

}



Implementation
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Ruby 1.9.0-0
Easy to Implementation
No Spec Changes



Evaluation
Toy-Program
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Reduce Mem Time
Encode/Decode don’t
affect to Performance



Evaluation
Compared with other Ruby Impl.
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From Comp. Lang. Shootout [4]



Evaluation
Compared with Other Languages
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Evaluate with other languages
Note that C/Java use “volatile” to avoid 
optimization

i = 0; f = 0.0
while i<30_000_000

i += 1
f += 0.1; f -= 0.1
f += 0.1; f -= 0.1
f += 0.1; f -= 0.1
f += 0.1; f -= 0.1

end



Evaluation
Compared with Other Languages
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[PLAN]
JIT Compiler
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Iʼm re-designing to reduce VM 
instructions to impl. it easy

Current VM has about 50 instructions
Ex) “definemethod” move to “Method”



[PLAN]
Pre-Compiler
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YARV VM Generator helps us
Ruby to “Pre-compiled”
Ruby to “C”

Purpose
Eliminate Loading-Time
More aggressive optimization
Obfuscation (?)



[PLAN]
Multi-VM Creation
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Purpose
Embed Ruby into Application

mod_ruby, …
Sand-box



Multi-VM Overview
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Ruby (YARV)

Native Thread
System S/W

Processor(s)
PE PE PE・・・

H/W

RT RT RT

NT NT NT

Thread SchedulerS/W

PE: Processor Element, UL: User Level, KL: Kernel Level

・・・

・・・

VM1 VM2



Multi-VM Points
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How to control VMs?
C Level? → Designed with Nobuyoshi Nakada

Making new VM is need only 3 lines
Ruby Level?

How to share environments Inter VM
Trade off between Isolation and Util.



[PLAN]
Customizable VM Core
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Ruby is tooooo FAT to use XXX purpose
Many Many Convenience Methods/Feature

Need Re-design Ruby Core



[PLAN]
Debug/Profile Support Feature
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Only cheep Debugger/Profiler API
set_trace_func, Thread#set_trace_func

Introduce “break” instruction?



Future Work
Benchmark
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Current Benchmark suits is for checking 
YARV Performance

Focus to YARV optimization
Toy benchmarks

We need more pragmatic benchmarks



Summary
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YARV Merged into Ruby 1.9
Iʼm working at Advanced VM Topics

Performance
Parallel Thread Execution
Embedding Float Value
JIT Compiler
Pre-Compiler

“Ruby to Compiled file” Compiler
“Ruby to C” Compiler

New Feature
Multi-VM Creation
Customizable Ruby Core
Debug/Profile support feature



Summary
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Merging YARV is not a goal, 
but a start

VM is a very flexible 
infrastructure to hack
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One more thing…



Sasada Lab@U-Tokyo
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Iʼll make a laboratory from 2009, Apr
Department of Creative Informatics, 
Graduate School of Information Science and 
Technology, The University of Tokyo
Graduate School
Lab is at Akihabara, Tokyo, Japan

Unfortunately I canʼt employ you as 
Research Assistant

There are not enough grants in Japan…



Research Topics
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Ruby, Ruby, Ruby, PHP, Ruby, Ruby 
Ruby, Ruby, Ruby, Ruby, Python, Ruby
Ruby, Perl, Ruby, Ruby, Ruby, Ruby
Ruby, Ruby, Ruby, Ruby, Lua, Ruby
Ruby, Ruby, Java, Ruby, Ruby, Ruby
Implementation of Programming Language
Operating System / Processor Architecture
Software development



Sasada Lab.
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if you.have_interest(
:Japan, Tokyo, :Akihabara,
:Japanese,
:Ruby, :Research, :Development
)

you.send_mail_to “ko1 at atdot dot net”
end
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Thank you for your attention!
Any Questions?

ささだ こういち
Koichi Sasada

Ko1 at atdot dot net
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