
Ruby Meets VM, Koichi Sasada, EURUKO 20081

Past, Present and Future
Koichi “ko1” Sasada

ささだこういち
ko1 at atdot dot net

RUBY MEETS VM

Ｋｏｉｃｈｉ Ｓａｓａｄａ

ko1 at atdot dot net

2Ruby Meets VM, Koichi Sasada, EURUKO 2008

Point of This Presentation
3

Merging YARV is not a goal,
but a start

YARV: Yet Another RubyVM

Ruby Meets VM, Koichi Sasada, EURUKO 2008

Notice

Ruby Meets VM, Koichi Sasada, EURUKO 2008

4

I canʼt speak English well, so I write down
all things what I want to say.

Do you get ready for opera glasses?
Unfortunately, some slides are written in
Japanese

You can ask questions with
Japanese, C, Ruby, …, or slow/short English.
“How to impl. Ruby”, not “How to use Ruby”
“x50” is too big mouth

Maybe x20

Self Introduction

Ruby Meets VM, Koichi Sasada, EURUKO 2008

5

Koichi (given name) Sasada (family name)
ささだ（family name) こういち (given name)
笹⽥ (family name) 耕⼀ (given name)

Lecturer @ University of Tokyo (Feb. 2008-)
Only VM developer

Donʼt have compatibility with Matz
Please call me “ko-i-chi”

Agenda

Ruby Meets VM, Koichi Sasada, EURUKO 2008

6

History of YARV
Advanced VM Topics

Performance
Parallel Thread Execution
Embedding Float Value
JIT Compiler
Pre-Compiler

“Ruby to Compiled file” Compiler
“Ruby to C” Compiler

New Feature
Multi-VM Creation
Customizable Ruby Core
Debug/Profile support feature

Summary

History of YARV

Ruby Meets VM, Koichi Sasada, EURUKO 2008

7

4 Years
1, Jan 2004 Project Start
2004-2005 VM Core, Optimization

Supported by MITO youth Project (IPA)
2005-2006 Thread, etc

Supported by MITO Project (IPA)
1, Apr 2006 Got a Job (Assistant on U-Tokyo)

2006-2007 etc, etc
Supported by MITO Project (IPA)
25, Dec 2007 Got a Ph.D

25, Dec 2007 (GMT) 1.9 Release

FYI

Ruby Meets VM, Koichi Sasada, EURUKO 2008

8

Ruby 2.0 – since 2003 3/31
Perl 6 – since 2003 4/1

YARV Policy

Ruby Meets VM, Koichi Sasada, EURUKO 2008

9

Performance
Speed, Speed, Speed
Applied many many many optimization Tech.

Compatibility
C extension API
Not language compatibility

Auto-generation
VM description to Concrete VM source code

YARV: Performance Improvement

Ruby Meets VM, Koichi Sasada, EURUKO 2008

10

11

VM Generator

VM Instrunction
Description

Compiler
(Optimizer)

Virtual Machine

Verifier

Dis-assembler
Assembler

Documents

C SourceAOT Compiler

Future work

Enemies of YARV

Ruby Meets VM, Koichi Sasada, EURUKO 2008

12

Ruby Specification ≒ Matz
Ruby Spec kills many optimization techs
We love “Dynamic” “Meta” Programming,
but…

Changing Spec is also Nightmare
Portability

We canʼt use system depending techs.
Rivals (not Enemy)

Jruby, Rubinius, IronRuby, …
Peggy work on my Job

Evaluation: Improve case
13

Max: x20

Evaluation: Macro-Benchmark
14

Evaluation:
Compare with Other Languages

15

Limited by
Bignum

Caclulation

Faster than
Other VMs

Evaluation: VM doesn’t affect
16

Overhead
is not in VM

Advanced VM Topics

Ruby Meets VM, Koichi Sasada, EURUKO 2008

17

Performance
Parallel Thread Execution
Embedding Float Value
JIT Compiler
Pre-Compiler

“Ruby to Compiled file” Compiler
“Ruby to C” Compiler

New Feature
Multi-VM Creation
Customizable Ruby Core
Debug/Profile support feature

Ph.D Thesis
Efficient Implementation of Ruby Virtual Machine

18

Implement a High-Speed
Ruby Interpreter

Introduce VM
↓

YARV
(Merged into Ruby 1.9)

Parallel Ruby Execution
↓

Parallel Thread Execution

Ruby Meets VM, Koichi Sasada, EURUKO 2008

Parallel Thread Execution

Ruby Meets VM, Koichi Sasada, EURUKO 2008

19

Using Native Thread
Get rid of Giant VM Lock

Method (1)
Ruby Thread and Native Thread (1:N) a.k.a -1.8 Ruby model
20

Ruby (YARV)

Native Thread
System S/W

Processor(s)
PE PE PE・・・

H/W

RT RT RT

NT

Thread SchedulerS/W

PE: Processor Element, UL: User Level, KL: Kernel Level

・・・

・・・

Method (2)
Ruby Thread and Native Thread (1:1)

21

Ruby (YARV)

Native Thread
System S/W

Processor(s)
PE PE PE・・・

H/W

RT RT RT

NT NT NT

Thread SchedulerS/W

PE: Processor Element, UL: User Level, KL: Kernel Level

・・・

・・・

Method (3)
Ruby Thread and Native Thread (N:M)

22

Ruby (YARV)

Native Thread
System S/W

Processor(s)
PE PE PE・・・

H/W

RT RT RT

NT NT NT

Thread SchedulerS/W

PE: Processor Element, UL: User Level, KL: Kernel Level

・・・

・・・

RT

Discussion
Ruby Thread and Native Thread

23

Mapping with Native Thread and Ruby
Thread

Accept 1:1 model to make Ruby Simple
Depend Performance on Native Thread Libraries

Pros Cons

1:N Lightweight Thread
Control

Can’t run in Parallel

1:1 Run in Parallel
Simple, Portable

Heavyweight Thread
Control (Creation, etc)

N:M Lightweight Thread
Control, Run in Parallel

Complication, Non-
Portable

Accepted Method:
Ruby Thread and Native Thread (1:1) ← Ruby 1.9/YARV

24

Ruby (YARV)

Native Thread
System S/W

Processor(s)
PE PE PE・・・

H/W

RT RT RT

NT NT NT

Thread SchedulerS/W

PE: Processor Element, UL: User Level, KL: Kernel Level

・・・

・・・

Introduction of Mutual Exclusion
25

Needed at
1. Global VM Management Data
2. Object Management / GC
3. Inline Cache
4. Thread Unsafe “C” methods

(1) Global VM Management Data
26

Managed by Table
Variable Name → Value
Method Name → Method Body
…

Introduce Synchronization at Table
Operation

Get/Set
Easy

(2) Object Management/GC
27

Synchronous GC

(2) Object Management
Lock-Free Object Allocation with Thread Local Free List

28

29

(2) Object Management
Lock-Free Object Allocation with Thread Local Free List

(3) Inline Cache
30

Using by VM performance
Embed Cache Entries in Instruction Sequence

Sync. For Coherence -> Performance Problem
Key and Value of Cache Entry

Sync.-Free Inline Cache
Cache Miss -> Make a new entry

GC will clean-up old cache entries
Increase Miss-Penalty, but Good for average

(4) Thread Unsafe “C” Methods
31

CRuby has many many methods
implemented by “C”

All of them are “Thread Unsafe”
Because -1.8 doesnʼt support parallelization

Basic Policy: Using Giant-Lock
Invoke old “C” method with Giant-Lock Acquire
Re-write C methods as Thread Safe, this
method will be Giant-Lock free

32

Problem
Conflict of Giant-Lock Acquirement

GL Conflict →
Performance Decrement
Limit Running CPU

Check GL Conflict Periodically
Limit their CPU
Using pthread_setaffinity_np on NTPL

SetThreadAffinityMask on Windows

Running CPU Limitation
33

Ruby (YARV)

Native Thread
System S/W

Processor(s)
PE PE PE・・・

H/W

RT1 RT2 RTn

NT NT NT

S/W

PE: Processor Element, UL: User Level, KL: Kernel Level

・・・

・・・

Thread Scheduler

GL
Conflict

34

Ruby (YARV)

Native Thread
System S/W

Processor(s)
PE PE PE・・・

H/W

RT1 RT2 RTn

NT NT NT

S/W

PE: Processor Element, UL: User Level, KL: Kernel Level

・・・

・・・

Thread Scheduler

GL
Conflict

Running CPU Limitation
Force to run RT1 and

RT2 in Serial
→Avoid Conflict

Performance Evaluation
Environment

35

Evaluation Environment
CPU: Intel Xeon CPU E5335 2.0GHz
Quad core x 2 = 8 core
OS: GNU/Linux 2.6.18 x86_64 SMP / NPTL
Compiler: gcc version 4.1.2

Ruby
ruby 1.8.6 (2007-11-02) [x86_64-linux]

YARV Optimization
All except Unification, Stack caching

Evaluation
Thread control Primitives

36

Creation, Switch: 0.1M, Mutual Exclusion: 1M
Low Performance for Creation/Join because of Native Thread

Native Thread Overhead

Memory Allocation Overhead

High Performance Synchronization
High Performance Thread Context Switch

Independent Stack-Depth (1.8 depends on depth)

Ruby (sec) YARV (sec) Ratio NTPL (sec)
Creation 0.89 1.95 0.46 0.59

Mutual Exclusion 0.67 0.38 1.76 -
Switch (depth:1) 6.01 0.06 100.17 -
Switch (depth:16) 11.55 0.06 192.5 -

Evaluation
Result (Micro-benchmark)

37

•fib: fib(N) (Make new Thread if N>30)
•hetero: fib + concat (1 thread)
•mandel: Mandelbrot (Big GC overhead)
•concat: String Concatenate (No Parallelism)

Evaluation
Result (Micro-benchmark)

38

x 7.4
w/8 Cores

CPU Limitation
39

No Limitation

Using Limitation

x3.4

Parallel Thread Execution
Problem

Ruby Meets VM, Koichi Sasada, EURUKO 2008

40

Unsafe “Old C” methods
Replacing all is not easy task
Man Power Problem?

Programming Model
Is Parallel Thread Application easy to write?

Ruby 1.9
1.9 support Native Thread
1.9 doesnʼt support Parallel Thread Execution

Embedded Float Representation

Ruby Meets VM, Koichi Sasada, EURUKO 2008

41

Float object is not immediate type
This means that Float is “allocated” each time
Ex) Fixnum, Symbol, etc

Half execution time of Float calculation is
Memory management

Toy-Program
42

i = 0; f = 0.0

while i<30_000_000
i += 1

f += 0.1; f -= 0.1

f += 0.1; f -= 0.1

f += 0.1; f -= 0.1

f += 0.1; f -= 0.1

end

List of Execution Time
Toy-Program

43

Using OProfile
Linux 2.6 (x86_64), Xeon

Ruby 1.9.0

Memory
Management

Float Calc

Embed Float Object as Fixnum

Ruby Meets VM, Koichi Sasada, EURUKO 2008

44

Solution: Embed 64bit Float value to 64bit
CPU Pointer type!

Review
IEEE 754 Double Precision Representation

45

b63 b62-b52 b51-b0

m: Mantissa (52bit)e: exponential (11bit)
s: Sign (1 bit)

64bit Double

Discussion
How to Embed 64 bit Double?

46

VALUE embed Object doesnʼt need
memory overhead
64bit CPU have 64 bit pointer type
→ Use 64 bit CPU
At least we need 1 bit for TAG bit

From Mantissa?
Decrease Precision

From Exponential?
Decrease Representation Range

Proposal
47

From Exponential
But Store Float in Heap if it is Out of Range
→ Save a Range and Precision

Often used 01000000000b〜10111111111b
（ ）

If Float is out of range, alloc from Heap
Float Out of this Range is Rare Number on
Numeric Application -> Practical Solution

Proposal
Real Program

48

1) Check the Range of “e” (512〜1535)
2) IEEE745 double -> Float (Encoding)
3) Float -> IEEE745 double (Decoding)

Proposal
Float Representation with Tag

49

e: 10000000000b〜01111111111b
Note that if “b62 != b61”, we can embed.
On Ruby, Tag is at LSB
→ Left Rotate 3bit
b63 b62 b61 b60 … b0 → 3 bit rotate
b60 … b0 b63 b62 b61

Proposal
Real Encoding Code

50

VALUE rb_float_new(double dbl) {
VALUE v1 = BIT_DOUBLE2VALUE(dbl);
VALUE v2 = BIT_ROTL(v1, 3);
if ((v2 + 1) & 0x02) // check lower 2 bits
return v2 | 0x01; // Embed tag

else {
if (dbl == 0) // 0.0
return ruby_float_zero;

else // alloc from Heap
return rb_float_new_in_heap(dbl);

}}

Proposal
Real Decode Code

51

double RFLOAT_VALUE(VALUE v) {
if (v & 1) {
VALUE v1 = v ^ ((v >> 1) & 1);
VALUE v2 = BIT_ROTR(v1, 3);
return BIT_VALUE2DOUBLE(v2);

}
else
return RFLOAT(v)->float_value;

}

Implementation
52

Ruby 1.9.0-0
Easy to Implementation
No Spec Changes

Evaluation
Toy-Program

53

Reduce Mem Time
Encode/Decode don’t
affect to Performance

Evaluation
Compared with other Ruby Impl.

54

From Comp. Lang. Shootout [4]

Evaluation
Compared with Other Languages

55

Evaluate with other languages
Note that C/Java use “volatile” to avoid
optimization

i = 0; f = 0.0
while i<30_000_000

i += 1
f += 0.1; f -= 0.1
f += 0.1; f -= 0.1
f += 0.1; f -= 0.1
f += 0.1; f -= 0.1

end

Evaluation
Compared with Other Languages

56

[PLAN]
JIT Compiler

Ruby Meets VM, Koichi Sasada, EURUKO 2008

57

Iʼm re-designing to reduce VM
instructions to impl. it easy

Current VM has about 50 instructions
Ex) “definemethod” move to “Method”

[PLAN]
Pre-Compiler

Ruby Meets VM, Koichi Sasada, EURUKO 2008

58

YARV VM Generator helps us
Ruby to “Pre-compiled”
Ruby to “C”

Purpose
Eliminate Loading-Time
More aggressive optimization
Obfuscation (?)

[PLAN]
Multi-VM Creation

Ruby Meets VM, Koichi Sasada, EURUKO 2008

59

Purpose
Embed Ruby into Application

mod_ruby, …
Sand-box

Multi-VM Overview
60

Ruby (YARV)

Native Thread
System S/W

Processor(s)
PE PE PE・・・

H/W

RT RT RT

NT NT NT

Thread SchedulerS/W

PE: Processor Element, UL: User Level, KL: Kernel Level

・・・

・・・

VM1 VM2

Multi-VM Points

Ruby Meets VM, Koichi Sasada, EURUKO 2008

61

How to control VMs?
C Level? → Designed with Nobuyoshi Nakada

Making new VM is need only 3 lines
Ruby Level?

How to share environments Inter VM
Trade off between Isolation and Util.

[PLAN]
Customizable VM Core

Ruby Meets VM, Koichi Sasada, EURUKO 2008

62

Ruby is tooooo FAT to use XXX purpose
Many Many Convenience Methods/Feature

Need Re-design Ruby Core

[PLAN]
Debug/Profile Support Feature

Ruby Meets VM, Koichi Sasada, EURUKO 2008

63

Only cheep Debugger/Profiler API
set_trace_func, Thread#set_trace_func

Introduce “break” instruction?

Future Work
Benchmark

Ruby Meets VM, Koichi Sasada, EURUKO 2008

64

Current Benchmark suits is for checking
YARV Performance

Focus to YARV optimization
Toy benchmarks

We need more pragmatic benchmarks

Summary

Ruby Meets VM, Koichi Sasada, EURUKO 2008

65

YARV Merged into Ruby 1.9
Iʼm working at Advanced VM Topics

Performance
Parallel Thread Execution
Embedding Float Value
JIT Compiler
Pre-Compiler

“Ruby to Compiled file” Compiler
“Ruby to C” Compiler

New Feature
Multi-VM Creation
Customizable Ruby Core
Debug/Profile support feature

Summary
66

Merging YARV is not a goal,
but a start

VM is a very flexible
infrastructure to hack

Ruby Meets VM, Koichi Sasada, EURUKO 2008

Ruby Meets VM, Koichi Sasada, EURUKO 2008

67

One more thing…

Sasada Lab@U-Tokyo

Ruby Meets VM, Koichi Sasada, EURUKO 2008

68

Iʼll make a laboratory from 2009, Apr
Department of Creative Informatics,
Graduate School of Information Science and
Technology, The University of Tokyo
Graduate School
Lab is at Akihabara, Tokyo, Japan

Unfortunately I canʼt employ you as
Research Assistant

There are not enough grants in Japan…

Research Topics

Ruby Meets VM, Koichi Sasada, EURUKO 2008

69

Ruby, Ruby, Ruby, PHP, Ruby, Ruby
Ruby, Ruby, Ruby, Ruby, Python, Ruby
Ruby, Perl, Ruby, Ruby, Ruby, Ruby
Ruby, Ruby, Ruby, Ruby, Lua, Ruby
Ruby, Ruby, Java, Ruby, Ruby, Ruby
Implementation of Programming Language
Operating System / Processor Architecture
Software development

Sasada Lab.

Ruby Meets VM, Koichi Sasada, EURUKO 2008

70

if you.have_interest(
:Japan, Tokyo, :Akihabara,
:Japanese,
:Ruby, :Research, :Development
)

you.send_mail_to “ko1 at atdot dot net”
end

Ruby Meets VM, Koichi Sasada, EURUKO 2008

71

Thank you for your attention!
Any Questions?

ささだ こういち
Koichi Sasada

Ko1 at atdot dot net

	スライド番号 1
	Ruby Meets VM
	Point of This Presentation
	Notice
	Self Introduction
	Agenda
	History of YARV
	FYI
	YARV Policy
	YARV: Performance Improvement
	VM Generator
	Enemies of YARV
	Evaluation: Improve case
	Evaluation: Macro-Benchmark
	Evaluation:�Compare with Other Languages
	Evaluation: VM doesn’t affect
	Advanced VM Topics
	Ph.D Thesis� Efficient Implementation of Ruby Virtual Machine
	Parallel Thread Execution
	Method (1)�Ruby Thread and Native Thread (1:N) a.k.a -1.8 Ruby model
	Method (2)� Ruby Thread and Native Thread (1:1)
	Method (3)�Ruby Thread and Native Thread (N:M)
	Discussion� Ruby Thread and Native Thread
	Accepted Method:� Ruby Thread and Native Thread (1:1) ← Ruby 1.9/YARV
	Introduction of Mutual Exclusion
	(1) Global VM Management Data
	(2) Object Management/GC
	(2) Object Management�　　Lock-Free Object Allocation with Thread Local Free List
	(2) Object Management�　　Lock-Free Object Allocation with Thread Local Free List
	(3) Inline Cache
	(4) Thread Unsafe “C” Methods
	Problem�Conflict of Giant-Lock Acquirement
	Running CPU Limitation
	スライド番号 34
	Performance Evaluation�Environment
	Evaluation�Thread control Primitives
	Evaluation�Result (Micro-benchmark)
	Evaluation�Result (Micro-benchmark)
	CPU Limitation
	Parallel Thread Execution�Problem
	Embedded Float Representation
	Toy-Program
	List of Execution Time�Toy-Program
	Embed Float Object as Fixnum
	Review�IEEE 754 Double Precision Representation
	Discussion�How to Embed 64 bit Double?
	Proposal
	Proposal�Real Program
	Proposal�Float Representation with Tag
	Proposal�Real Encoding Code
	Proposal�Real Decode Code
	Implementation
	Evaluation�Toy-Program
	Evaluation�Compared with other Ruby Impl.
	Evaluation�Compared with Other Languages
	Evaluation�Compared with Other Languages
	[PLAN]�JIT Compiler
	[PLAN]�Pre-Compiler
	[PLAN]�Multi-VM Creation
	Multi-VM Overview
	Multi-VM Points
	[PLAN]�Customizable VM Core
	[PLAN]�Debug/Profile Support Feature
	Future Work�Benchmark
	Summary
	Summary
	スライド番号 67
	Sasada Lab@U-Tokyo
	Research Topics
	Sasada Lab.
	スライド番号 71

