
Toward
“more”

efficient Ruby 2.1
Koichi Sasada

<ko1@heroku.com>

Heroku, Inc.
Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 1

Agenda

•Ruby’s rough history
•Ruby 2.1 new “internal” features
• Internal object management hooks

• Object allocation tracing
• GC hooks

• RGenGC: Restricted Generational Garbage
Collection ← Today’s main topic

•Ruby 2.1 expected “internal” features
• Parallel sweeping
• Sophisticated inline cache invalidation mechanism
•Memory efficient string management

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 2

About this presentation

• This presentation is advanced version of my last
presentation at RubyKaigi 2013 (May)
• Talked in Japanese (with English slides)
• Recycle presentation (≒ Good lazy programmer)

Slide PDF is http://rvm.jp/t.pdf
(temporary URL)

• I’m poor at English speaking
• All contents I want to say are written in my slides
• Please give me a question with slow/clear/easy English

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 3

http://rvm.jp/t.pdf

This presentation is NOT about

•Not about Rails application development

•Not about Programming language design

•Not about Mathematics

•Not abou Functional programming languages

•Not about Ruby programming language

Mainly about C programming language
because it is about “C”Ruby

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 4

Who am I ?

•Koichi Sasada a.k.a ko1
•笹田耕一 in Kanji character

• Japanese lesson: “1”
•One in English
•Mono in Greece
• Eins in German
•Un in French
•Uno in Italian, Spanish
• “Ichi” (“一” in Kanji) in Japanese

• I’m the first son of my parents

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 5

Who am I ?

•Koichi Sasada
• Matz team at Heroku, Inc.

• Full-time CRuby developer
• Working in Japan

•CRuby/MRI committer
• Virtual machine (YARV) from Ruby 1.9
• YARV development since 2004/1/1

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 6

Matz team in Heroku

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 7

Matz @ Shimane
Title collector

Nobu @ Tochigi
Patch monster

ko1 @ Tokyo
EDD developer

8

ko1 @ Tokyo
EDD developer

Matz @ Shimane
Title collector

Communication
with Skype

Matz team at Heroku
Hierarchy

Nobu @ Tochigi
Patch monster

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

Matz
Title collector

•He has so many (job) title
• Chairman - Ruby Association
• Fellow - NaCl
• Chief architect, Ruby - Heroku
• Research institute fellow – Rakuten
• Chairman – NPO mruby Forum
• Senior researcher – Kadokawa Ascii Research Lab
• Visiting professor – Shimane University
•Honorable citizen (living) – Matsue city
•Honorable member – Nihon Ruby no Kai
•…

•This margin is too narrow to contain

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 9

Nobu
Patch monster

•Great patch creator

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 10

Nobu
Patch monster

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 11

0

20

40

60

80

2008/7/1 2009/7/1 2010/7/1 2011/7/1 2012/7/1

Commit number per day

Total Trunk, Last 5 year

Nobu
Patch monster

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 12

0

20

40

60

80

2008/7/1 2009/7/1 2010/7/1 2011/7/1 2012/7/1

Commit number per day

Total matz Trunk, Last 5 year

Nobu
Patch monster

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 13

0

20

40

60

80

2008/7/1 2009/7/1 2010/7/1 2011/7/1 2012/7/1

Commit number per day

Total matz ko1 Trunk, Last 5 year

Nobu
Patch monster

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 14

0

20

40

60

80

2008/7/1 2009/7/1 2010/7/1 2011/7/1 2012/7/1

Commit number per day

Total nobu matz ko1 Trunk, Last 5 year

Nobu
Patch monster

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 15

nobu
28%

akr
13%svn

9%
naruse

8%
usa
4%

ko1
3%

drbrain
3%

kosaki
3%

matz
3%

mame
2%

tadf
2%

kazu
2%

tenderlove
2%

marcandre
2%

yugui
1%

zzak
1%

shugo
1%

knu
1%

nagachika
1%

emboss
1%
mrkn

1%
kou
1%

shyouhei
1%

nari
1%

ryan
0%

xibbar
0%
nahi
0%

ayumin
0%
suke
0%
ktsj
0%

tarui
0%

shirosaki
0%
sorah

0%
nagai

0%
wanabe

0%
ngoto

0%
keiju
0%
azav
0%

eregon
0%

duerst
0%
kouji
0%

charliesom
e

0%

jeg2
0%

takano32
0%

luislavena
0%
seki
0%

glass
0%

arton
0%

eban
0%

hsbt
0%

kanemoto
0%

muraken
0%

tmm1
0%

aamine
0%

headius
0%

evan
0%

iwamatsu
0%
jim
0%

akira
0%

technoram
a

0%

davidflanag
an
0%

dblack
0%

gotoken
0%

gotoyuzo
0%

okkez
0%

akiyoshi
0%

dave
0%

gsinclair
0%

katsu
0%

kosako
0%

ksaito
0%

michal
0%

mneumann
0%

ntalbott
0%

ocean
0%
ser
0%

shigek
0%

siena
0%

ttate
0%

uema2
0%

wew
0%

why
0%

zsombor
0%

Trunk, Last 5 year

Ko1
EDD developer

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 16

0

5

10

15

20

25

RubyConf

RubyKaigi

Ruby 2.0

EDD: Event Driven Development

Euruko

Brief history of Ruby

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 17

Brief history of Ruby

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 18

1993 2/24
Birth of Ruby
(in Matz’ computer)

1995/12
Ruby 0.95
1st release

1996/12
Ruby 1.0

1998/12
Ruby 1.2

1999/12
Ruby 1.4

2000/6
Ruby 1.6

2003/8
Ruby 1.8

2009/1
Ruby 1.9.0

2013/02
Ruby 20th &
Ruby 2.0.0

2004～
Ruby on Rails

2000 Book:
Programming Ruby

2012/4
ISO Ruby

2004/1
Start YARV proj.

Brief history of Ruby

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 19

B.C. 490
Battle of Marathon

B.C. 431
Peloponnesian War

A.D. 1821
The Greek War
of Independence

A.D. 330
Constantinople
founded

A.D. 1453
The fall of
Constantinople

“20 years” is not so long!
(compare with Greece history)

2013/02
Ruby 20th &
Ruby 2.0.0

ISO Ruby Standard

•Published at 2012/04
• ISO/IEC 30170:2012 Information technology --

Programming languages – Ruby
• http://www.iso.org/iso/iso_catalogue/catalogue_ics/

catalogue_detail_ics.htm?ics1=35&ics2=060&ics3=&
csnumber=59579

“ISO/IEC 30170:2012 specifies the syntax and
semantics of the computer programming language
Ruby, and the requirements for conforming Ruby
processors, strictly conforming Ruby programs, and
conforming Ruby programs.”

•Hybrid 1.8 and 1.9
•Difference parts are “undefined”

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 20

http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?ics1=35&ics2=060&ics3=&csnumber=59579

Ruby 2.0

Stable version

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 21

Ruby 2.0

•New features
•Keyword arugments
•Refinements
•Module#prepend

•Ruby 2.0.0-p195p247 was already released

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 22

-*- rdoc -*-

= NEWS for Ruby 2.0.0

This document is a list of user visible feature
changes made between

releases except for bug fixes.

Note that each entry is kept so brief that no reason
behind or

reference information is supplied with. For a full
list of changes

with all sufficient information, see the ChangeLog
file.

== Changes since the 1.9.3 release

=== C API updates

* NUM2SHORT() and NUM2USHORT() added. They
are similar to NUM2INT, but short.

* rb_newobj_of() and NEWOBJ_OF() added. They
create a new object of a given class.

=== Library updates (outstanding ones only)

* builtin classes

* Array

* added method:

* added Array#bsearch for binary search.

* incompatible changes:

* random parameter of Array#shuffle! and
Array#sample now

will be called with one argument, maximum
value.

* when given Range arguments, Array#values_at
now returns nil for each

value that is out-of-range.

* Enumerable

* added method:

* added Enumerable#lazy method for lazy
enumeration.

* Enumerator

* added method:

* added Enumerator#size for lazy size
evaluation.

* extended method:

* Enumerator.new accept an argument for lazy
size evaluation.

* ENV

* aliased method:

* ENV.to_h is a new alias for ENV.to_hash

* Fiber

* incompatible changes:

* Fiber#resume cannot resume a fiber which
invokes "Fiber#transfer".

* File

* extended method:

* File.fnmatch? now expands braces in the
pattern if

File::FNM_EXTGLOB option is given.

* GC

* improvements:

* introduced the bitmap marking which
suppresses to copy a memory page

with Copy-on-Write.

* introduced the non-recursive marking which
avoids unexpected stack overflow.

* GC::Profiler

* added method:

* added GC::Profiler.raw_data which returns
raw profile data for GC.

* Hash

* added method:

* added Hash#to_h as explicit conversion
method, like Array#to_a.

* extended method:

* Hash#default_proc= can be passed nil to clear
the default proc.

* Kernel

* added method:

* added Kernel#Hash conversion method like
Array() or Float().

* added Kernel#using, which imports
refinements into the current scope.

[experimental]

* added Kernel#__dir__ which returns a current
dirname.

* added Kernel#caller_locations which returns
an array of

frame information objects.

* extended method:

* Kernel#warn accepts multiple args in like puts.

* Kernel#caller accepts second optional
argument `n' which specify

required caller size.

* Kernel#to_enum and enum_for accept a block
for lazy size evaluation.

* incompatible changes:

* system() and exec() closes non-standard file
descriptors

(The default of :close_others option is changed
to true by default.)

* respond_to? against a protected method now
returns false unless

the second argument is true.

* __callee__ has returned to the original
behavior, and now

returns the called name but not the original
name in an

aliased method.

* Kernel#inspect does not call #to_s anymore

(it used to call redefined #to_s).

* LoadError

* added method:

* added LoadError#path method to return the
file name that could not be

loaded.

* Module

* added method:

* added Module#prepend which is similar to
Module#include,

however a method in the prepended module
overrides the

corresponding method in the prepending
module.

* added Module#refine, which extends a class
or module locally.

[experimental]

* added Module#refinements, which returns
refinements defined in the

receiver. [experimental]

* added Module#using, which imports
refinements into the receiver.

[experimental]

* extended method:

* Module#define_method accepts a
UnboundMethod from a Module.

* Module#const_get accepts a qualified
constant string, e.g.

Object.const_get("Foo::Bar::Baz")

* Mutex

* added method:

* added Mutex#owned? which returns the
mutex is held by current

thread or not. [experimental]

* incompatible changes:

* Mutex#lock, Mutex#unlock, Mutex#try_lock,
Mutex#synchronize

and Mutex#sleep are no longer allowed to be
used from trap handler

and raise a ThreadError in such case.

* Mutex#sleep may spurious wakeup. Check
after wakeup.

* NilClass

* added method:

* added nil.to_h which returns {}

* Process

* added method:

* added getsid for getting session id (unix only).

* Range

* added method:

* added Range#size for lazy size evaluation.

* added Range#bsearch for binary search.

* Signal

* added method:

* added Signal.signame which returns signal
name

* incompatible changes:

* Signal.trap raises ArgumentError
when :SEGV, :BUS, :ILL, :FPE, :VTALRM

are specified.

* String

* added method:

* added String#b returning a copied string
whose encoding is ASCII-8BIT.

* change return value:

* String#lines now returns an array instead of an
enumerator.

* String#chars now returns an array instead of
an enumerator.

* String#codepoints now returns an array
instead of an enumerator.

* String#bytes now returns an array instead of
an enumerator.

* Struct

* added method:

* added Struct#to_h returning values with keys
corresponding to the

instance variable names.

* Thread

* added method:

* added Thread#thread_variable_get for getting
thread local variables

(these are different than Fiber local variables).

* added Thread#thread_variable_set for setting
thread local variables.

* added Thread#thread_variables for getting a
list of the thread local

variable keys.

* added Thread#thread_variable? for testing to
see if a particular thread

variable has been set.

* added Thread#backtrace_locations which
returns similar information of

Kernel#caller_locations.

* incompatible changes:

* Thread#join and Thread#value now raises a
ThreadError if target thread

is the current or main thread.

* Time

* change return value:

* Time#to_s returned encoding defaults to US-
ASCII but automatically

transcodes to Encoding.default_internal if it is
set.

* TracePoint

* new class. This class is replacement of
set_trace_func.

Easy to use and efficient implementation.

* toplevel

* added method:

* added main.define_method which defines a
global function.

* cgi

* Add HTML5 tag maker.

* CGI#header has been renamed to
CGI#http_header and

aliased to CGI#header.

* When HTML5 tagmaker called, overwrite
CGI#header,

CGI#header function is to create a <header>
element.

* iconv

* Iconv has been removed. Use String#encode
instead.

* io/wait

* new features:

* added IO#wait_writable method.

* added IO#wait_readable method as alias of
IO#wait.

* net/http

* new features:

* Proxies are now automatically detected from
the http_proxy environment

variable. See Net::HTTP::new for details.

* gzip and deflate compression are now
requested for all requests by

default. See Net::HTTP for details.

* SSL sessions are now reused across connections
for a single instance.

This speeds up connection by using a previously
negotiated session.

* new methods:

* Net::HTTP#local_host

* Net::HTTP#local_host=

* Net::HTTP#local_port

* Net::HTTP#local_port=

* extended method:

* Net::HTTP#connect uses local_host and
local_port if specified.

* net/imap

* new methods:

* Net::IMAP.default_port

* Net::IMAP.default_imap_port

* Net::IMAP.default_tls_port

* Net::IMAP.default_ssl_port

* Net::IMAP.default_imaps_port

* objspace

* new method:

* ObjectSpace.reachable_objects_from(obj)

* openssl

* Consistently raise an error when trying to
encode nil values. All instances

of OpenSSL::ASN1::Primitive now raise TypeError
when calling to_der on an

instance whose value is nil. All instances of
OpenSSL::ASN1::Constructive

raise NoMethodError in the same case.
Constructing such values is still

permitted.

* TLS 1.1 & 1.2 support by setting
OpenSSL::SSL::SSLContext#ssl_version to

:TLSv1_2, :TLSv1_2_server, :TLSv1_2_client
or :TLSv1_1, :TLSv1_1_server

:TLSv1_1_client. The version being effectively
used can be queried

with OpenSSL::SSL#ssl_version. Furthermore, it is
also possible to

blacklist the new TLS versions with
OpenSSL::SSL:OP_NO_TLSv1_1 and

OpenSSL::SSL::OP_NO_TLSv1_2.

* Added
OpenSSL::SSL::SSLContext#renegotiation_cb. A
user-defined callback

may be set which gets called whenever a new
handshake is negotiated. This

also allows to programmatically decline (client)
renegotiation attempts.

* Support for "0/n" splitting of records as BEAST
mitigation via

OpenSSL::SSL::OP_DONT_INSERT_EMPTY_FRAGME
NTS.

* OpenSSL requires passwords for decrypting
PEM-encoded files to be at least

four characters long. This led to awkward
situations where an export with

a password with fewer than four characters was
possible, but accessing the

file afterwards failed. OpenSSL::PKey::RSA,
OpenSSL::PKey::DSA and

OpenSSL::PKey::EC therefore now enforce the
same check when exporting a

private key to PEM with a password - it has to be
at least four characters

long.

* SSL/TLS support for the Next Protocol
Negotiation extension. Supported

with OpenSSL 1.0.1 and higher.

* OpenSSL::OPENSSL_FIPS allows client
applications to detect whether OpenSSL

is running in FIPS mode and to react to the
special requirements this

might impy.

* ostruct

* new methods:

* OpenStruct#[], []=

* OpenStruct#each_pair

* OpenStruct#eql?

* OpenStruct#hash

* OpenStruct#to_h converts the struct to a hash.

* extended method:

* OpenStruct.new also accepts an OpenStruct /
Struct.

* pathname

* extended method:

* Pathname#find returns an enumerator if no
block is given.

* rake

* rake has been updated to version 0.9.5.

This version is backwards-compatible with
previous rake versions and

contains many bug fixes.

See

http://rake.rubyforge.org/doc/release_notes/rake-
0_9_5_rdoc.html for a list

of changes in rake 0.9.3, 0.9.4 and 0.9.5.

* rdoc

* rdoc has been updated to version 4.0

This version is largely backwards-compatible with
previous rdoc versions.

The most notable change is an update to the ri
data format (ri data must

be regenerated for gems shared across rdoc
versions). Further API changes

are internal and won't affect most users.

See
https://github.com/rdoc/rdoc/blob/master/History
.rdoc for a list of

changes in rdoc 4.0.

* resolv

* new methods:

* Resolv::DNS#timeouts=

* Resolv::DNS::Config#timeouts=

* rexml

* REXML::Document#write supports Hash
arguments.

* REXML::Document#write supports
new :encoding option. It changes

XML document encoding. Without :encoding
option, encoding in

XML declaration is used for XML document
encoding.

* RubyGems

* Updated to 2.0.0.preview2

RubyGems 2.0.0 features the following
improvements:

* Improved support for default gems shipping
with ruby 2.0.0+

* A gem can have arbitrary metadata through
Gem::Specification#metadata

* `gem search` now defaults to --remote and is
anchored like gem list.

* Added --document to replace --rdoc and --ri.
Use --no-document to

disable documentation, --document=rdoc to
only generate rdoc.

* Only ri-format documentation is generated by
default.

* `gem server` uses RDoc::Servlet from RDoc 4.0
to generate HTML

documentation.

For an expanded list of updates and bug fixes see:

https://github.com/rubygems/rubygems/blob/mas
ter/History.txt

* shellwords

* Shellwords#shellescape() now stringifies the
given object using to_s.

* Shellwords#shelljoin() accepts non-string
objects in the given

array, each of which is stringified using to_s.

* syslog

* Added Syslog::Logger which provides a Logger
API atop Syslog.

* Syslog::Priority, Syslog::Level, Syslog::Option and
Syslog::Macros

are introduced for easy detection of available
constants on a

running system.

* tmpdir

* incompatible changes:

* Dir.mktmpdir uses FileUtils.remove_entry
instead of

FileUtils.remove_entry_secure. This means that
applications should not

change the permission of the created temporary
directory to make

accessible from other users.

* yaml

* Syck has been removed. YAML now completely
depends on libyaml being

installed.

* zlib

* Added streaming support for Zlib::Inflate and
Zlib::Deflate. This allows

processing of a stream without the use of large
amounts of memory.

* Added support for the new deflate strategies
Zlib::RLE and Zlib::FIXED.

* Zlib streams are now processed without the GVL.
This allows gzip, zlib and

deflate streams to be processed in parallel.

=== Language changes

* Added %i and %I for symbol list creation (similar
to %w and %W).

* Default source encoding is changed to UTF-8.
(was US-ASCII)

=== Compatibility issues (excluding feature bug
fixes)

* Array#values_at

See above.

* String#lines

* String#chars

* String#codepoints

* String#bytes

These methods no longer return an Enumerator,
although passing a

block is still supported for backwards
compatibility.

Code like str.lines.with_index(1) { |line,
lineno| ... } no longer

works because str.lines returns an array. Replace
lines with

each_line in such cases.

* Signal.trap

See above.

* Merge Onigmo.

https://github.com/k-takata/Onigmo

* The :close_others option is true by default for
system() and exec().

Also, the close-on-exec flag is set by default for
all new file descriptors.

This means file descriptors doesn't inherit to
spawned process unless

explicitly requested such as system(..., fd=>fd).

* Kernel#respond_to? against a protected method
now returns false

unless the second argument is true.

* Dir.mktmpdir in lib/tmpdir.rb

See above.

* OpenStruct new methods can conflict with
custom attributes named

"each_pair", "eql?", "hash" or "to_h".

* Thread#join, Thread#value

See above.

* Mutex#lock, Mutex#unlock, Mutex#try_lock,
Mutex#synchronize and Mutex#sleep

See above.

NEWS file of Ruby 2.0
Many new features!!

23Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 24

Matz said “Ruby is almost matured as a
programming language with 2.0 ”

http://itpro.nikkeibp.co.jp/article/NEWS/20130214/456322/

http://itpro.nikkeibp.co.jp/article/NEWS/20130214/456322/

Ruby versions

•Which version of Ruby (MRI) do you use?
1. Ruby 1.8.7
2. Ruby 1.9.2
3. Ruby 1.9.3
4. Ruby 2.0.0 p0
5. Ruby 2.0.0 p195
6. Ruby 2.0.0 p247

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 25

Ruby 2.0.0 is default at Heroku

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 26

https://blog.heroku.com/archives/2013/6/17/ruby-2-default-new-aps

PR

https://blog.heroku.com/archives/2013/6/17/ruby-2-default-new-aps

Rubyist Magazine
Ruby 2.0 Special articles

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 27

http://magazine.rubyist.net/?Ruby200SpecialEn

http://magazine.rubyist.net/?Ruby200SpecialEn

Ruby 2.1

Next version

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 28

Ruby 2.1 release plan announcement

“I, Naruse, take over the release manager of Ruby
2.1.0 from mame. Ruby 2.1.0 is planed to release
in 2013-12-25. I‘m planning to call for feature
proposals soon like 2.0.0 [ruby-core:45474], so if
you have a suggestion you should begin preparing
the proposal.”

- [ruby-core:54726] Announce take over the
release manager of Ruby 2.1.0

by NARUSE, Yui

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 29

2013/12/25!

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 30

http://www.flickr.com/photos/htakashi/5285103341/ by Takashi Hososhima

http://www.flickr.com/photos/htakashi/5285103341/

Ruby 2.1 schedule

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 31

2013/02
Ruby 2.0.0

2013/12/25
Ruby 2.1.0

RubyKaigi2013
5/30, 31, 6/1

RubyConf2013
11/8-10

Euruko2013
6/28, 29

Events are important for
EDD (Event Driven Development) Developers

We are
here!

Ruby 2.1 release plan announcement

“I, Naruse, take over the release manager of Ruby
2.1.0 from mame. Ruby 2.1.0 is planed to release
in 2013-12-25. I‘m planning to call for feature
proposals soon like 2.0.0 [ruby-core:45474], so if
you have a suggestion you should begin
preparing the proposal.”

- [ruby-core:54726] Announce take over the
release manager of Ruby 2.1.0

by NARUSE, Yui

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 32

Ruby 2.1 schedule (more)

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 33

2013/12/25
Ruby 2.1.0

We are
here!

2013/06
Call for Feature
Proposal (CFP)

2013/07
Dev-meeting

w/Matz

2013/09
Feature freeze

https://bugs.ruby-lang.org/projects/ruby-trunk/wiki/ReleaseEngineering210

2013/10
Preview1

2013/11
Preview2

2013/12
RC

RubyConf2013
11/8-10

https://bugs.ruby-lang.org/projects/ruby-trunk/wiki/ReleaseEngineering210

Ruby 2.1 schedule (more^2)

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 34

2013/12/25
Ruby 2.1.0

We are
here!

B.C. 490
Battle of Marathon

B.C. 431
Peloponnesian War A.D. 1821

The Greek War
of Independence

A.D. 330
Constantinople
founded

A.D. 1453
The fall of
Constantinople

Ruby 2.1 will be release Immediately!

Ruby 2.1

•New features

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 35

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 36

-*- rdoc -*-

= NEWS for Ruby 2.1.0

This document is a list of user visible feature changes made between
releases except for bug fixes.

Note that each entry is kept so brief that no reason behind or
reference information is supplied with. For a full list of changes
with all sufficient information, see the ChangeLog file.

== Changes since the 2.0.0 release

=== Language changes
=== Core classes updates (outstanding ones only)

* GC
* added environment variable:
* RUBY_HEAP_SLOTS_GROWTH_FACTOR: growth rate of the heap.

* IO
* extended methods:
* IO#seek accepts symbols (:CUR, :END, :SET) for 2nd argument.

* Kernel
* New methods:
* Kernel#singleton_method

* Mutex
* misc
* Mutex#owned? is no longer experimental.

* String
* New methods:
* String#scrub and String#scrub! verify and fix invalid byte sequence.

* extended methods:
* If invalid: :replace is specified for String#encode, replace
invalid byte sequence even if the destination encoding equals to
the source encoding.

* pack/unpack (Array/String)
* Q! and q! directives for long long type if platform has the type.

=== Core classes compatibility issues (excluding feature bug fixes)

* IO
* incompatible changes:
* open ignore internal encoding if external encoding is ASCII-8BIT.

* Module#ancestors

The ancestors of a singleton class now include singleton classes,
in particular itself.

=== Stdlib updates (outstanding ones only)

* Digest
* extended methods:
* Digest::Class.file takes optional arguments for its constructor

* Matrix
* Added Vector#cross_product.

* Net::SMTP
* Added Net::SMTP#rset to implement the RSET command

* Pathname
* New methods:
* Pathname#write
* Pathname#binwrite

* OpenSSL::BN
* extended methods:
* OpenSSL::BN.new allows Fixnum/Bignum argument.

* open-uri
* Support multiple fields with same field name (like Set-Cookie).

* Resolv
* New methods:
* Resolv::DNS.fetch_resource

* One-shot multicast DNS support
* Support LOC resources

* Rinda::RingServer, Rinda::RingFinger
* Rinda now supports multicast sockets. See Rinda::RingServer and
Rinda::RingFinger for details.

* Socket
* New methods:
* Socket.getifaddrs

* StringScanner
* extended methods:
* StringScanner#[] supports named captures.

* Tempfile
* New methods:
* Tempfile.create

=== Stdlib compatibility issues (excluding feature bug fixes)

* URI
* incompatible changes:
* URI.decode_www_form follows current WHATWG URL Standard.
It gets encoding argument to specify the character encoding.
It now allows loose percent encoded strings, but denies ;-separator.

* URI.encode_www_form follows current WHATWG URL Standard.
It gets encoding argument to convert before percent encode.
UTF-16 strings aren't converted to UTF-8 before percent encode by default.

=== C API updates

See NEWS file
Now, much smaller than Ruby 2.0

Ruby 2.1 features

•Refine m17n introduced from Ruby 1.9
•String#scrub, String#scrub!

• Verify and fix invalid byte sequence.

• I heard Matz has some ideas.

•Refine features introduced from Ruby 2.0
•Keyword arguments
•Refinements
•Module#prepend

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 37

Back to Ruby 2.0

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 38

39

Quote about Ruby 2.0 from Heroku blog

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

40

Me!

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

41Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

Mention about “Speed” of 2.0
Ruby 2.0 has a faster garbage collector and is Copy on Write
friendly. Copy on Write or COW is an optimization that can
reduce the memory footprint of a Ruby process when it is
copied. Instead of allocating duplicate memory when a
process is forked, COW allows multiple processes to share
the same memory until one of the processes needs to
modify a piece of information. Depending on the program,
this optimization can dramatically reduce the amount of
memory used to run multiple processes. Most Ruby
programs are memory bound, so reducing your memory
footprint with Ruby 2.0 may allow you to run more
processes in fewer dynos.
If you’re not already running a concurrent backend consider
trying the Unicorn web server.

42

Short summary: GC uses bitmap
marking and CoW friendly

Short summary: Let’s try Unicorn!

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

http://en.wikipedia.org/wiki/Copy-on-write
https://blog.heroku.com/archives/2013/2/27/unicorn_rails

43

Only mention about GC?

I DON’T work on GC!
People love GC performance

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

44

｡+.｡ヽ(*>∀<*)ﾉ｡.+。

Let’s consider about
GC/memory management!

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

Ruby 2.1 development

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 45

Ruby 2.1 internal features

•Internal hooks for memory management

•RGenGC: Restricted generational garbage
collection

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 46

Today’s topic

Ruby 2.1

Internal hooks for memory management

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 47

Internal hooks for memory management
What’s nice?

•You can collect more detailed analysis

•Examples
•Collect object allocation site information
•Collect usage of allocated objects
•Measure GC performance from outside

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 48

Internal hooks for memory management

•Added events
• RUBY_INTERNAL_EVENT_NEWOBJ

• When object is created

• RUBY_INTERNAL_EVENT_FREEOBJ
• When object is freed

• RUBY_INTERNAL_EVENT_GC_START
• When GC is started

• RUBY_INTERNAL_EVENT_GC_END
• When GC is finished

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 49

Ruby

Mark
Sweep

Stop the
(Ruby)
World

Sweep Sweep Sweep Sweep

GC
Start

GC
End

Internal hooks for memory management
Caution

•You can *NOT* trace these events using
TracePoint (introduced from 2.0)

•You need to write C-ext to use them, because
events are invoked during GC, etc

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 50

Internal hooks for memory management
Sample features

•ObjectSpace. trace_object_allocations
•Trace object allocation and record allocation-site

• Record filename, line number, creator method’s id and class

•Usage:
ObjectSpace.trace_object_allocations{ # record only in the block

o = Object.new

file = ObjectSpace.allocation_sourcefile(o) #=> __FILE__

line = ObjectSpace.allocation_sourceline(o) #=> __LINE__ -2

}

•Demonstration

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 51

Internal hooks for memory management
Postponed job

•You may want to write hooks in Ruby

→ Use ‘Postponed job’
• ‘Postponed jobs’ run at same timing as finalizers
•Usage: rb_postponed_job_register(func, data)
• `func(data)’ will be called at a safe-point

•See an sample code in “ext/objspace/gc_hooks.c”
•ObjectSpace.after_gc_(start|end) = proc{GC.start}
•Proc is called after GC

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 52

Ruby 2.1

RGenGC: new garbage collection

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 53

RGenGC: Summary

•RGenGC: Restricted Generational GC
•New GC algorithm allows mixing “Write-barrier

protected objects” and “WB unprotected objects”
•No (mostly) compatibility issue with C-exts

•Inserting WBs gradually
•We can concentrate WB insertion efforts for major

objects and major methods
•Now, Array, String, Hash, Object, Numeric objects

are WB protected
• Array, Hash, Object, String objects are very popular in Ruby

• Array objects using RARRAY_PTR() change to WB unprotected
objects (called as Shady objects), so existing codes still works.

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 54

RGenGC: Agenda

•Background
•Generational GC
•Ruby’s GC strategy

•Proposal: RGenGC
•Separating into normal objects and shady objects
•Shady objects at marking
•Shade operation

•Implementation

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 55

RGenGC: Background
Current CRuby’s GC
•Mark & Sweep
•Conservative
• Lazy sweep
•Bitmap marking
•Non-recursive marking

•C-friendly strategy
•Don’t need magical macros in C source codes
•Many many C-extensions under this strategy

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 56

marked

marked marked

markedmarked

RGenGC: Background
Mark & Sweep

1. Mark reachable
objects from root
objects

2. Sweep unmarked
objects (collection
and de-allocation)

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

Root objects

free

traverse

traverse traverse

traverse traverse

free

free

Collect unreachable
objects

57

GC Lecture

RGenGC: Background
Generational GC (GenGC)

•Weak generational hypothesis: Most objects die
young → Concentrating reclamation effort on the
youngest objects

•Separate young generation and old generation
•Create objects as young generation
•Promote to old generation after surviving n-th GC
• In CRuby, n == 1 (after 1 GC, objects become old)

•Usually, GC on young space (minor GC)

•GC on both spaces if no memory (major/full GC)

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 58

GC Lecture

RGenGC: Background
Generational GC (GenGC)

•Minor GC and Major GC can use different GC
algorithm
•Popular combination

→ Minor GC: Copy GC, Major GC: M&S
•On the CRuby’s: both Minor&Major GCs should

be M&S because CRuby’s GC (and existing codes)
based on conservative M&S algorithm

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 59

GC Lecture

RGenGC: Background: GenGC
[Minor M&S GC]

•Mark reachable objects
from root objects.
•Mark and promote to old

generation
• Stop traversing after old

objects
→ Reduce mark overhead
•Sweep not (marked or
old) objects

•Can’t collect Some
unreachable objects
•

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

Root objects

new

new new

new/
free

newnew

traverse

traverse traverse

traverse traverse

new/
free

old/
free

Don’t collect old object
even if it is unreachable.

collect

1st MinorGC

60

old

old old

oldold

GC Lecture

RGenGC: Background: GenGC
[Minor M&S GC]

•Mark reachable objects
from root objects.
•Mark and promote to old

generation
• Stop traversing after old

objects
→ Reduce mark overhead
•Sweep not (marked or
old) objects

•Can’t collect Some
unreachable objects
•

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

Root objects

old

old old

new/
free

oldold

traverse

ignore ignore

ignore ignore

new/
free

old/
free

Don’t collect old object
even if it is unreachable.

collect

2nd MinorGC

61

GC Lecture

RGenGC: Background: GenGC
[Major M&S GC]

• Normal M&S

• Mark reachable objects from
root objects
• Mark and promote to old gen

• Sweep unmarked objects

• Sweep all unreachable
(unused) objects

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

Root objects

new

old new

new/
free

oldold

traverse

traverse traverse

traverse traverse

new/
free

old/
free

collect

collect

62

GC Lecture

RGenGC: Background: GenGC
Problem: mark miss

•Old objects refer young objects

→ Ignore traversal of old object

→ Minor GC causes

marking leak!!
• Because minor GC ignores

referenced objects by old objects

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 63

Root objects

new

old

new

oldold

traverse

traverse

ignore ignore

old

Can’t mark new object!
→ Sweeping living object!

(Critical BUG)
ignore

GC Lecture

RGenGC: Background: GenGC
Introduce Remember set (Rset)

1. Detect creation of an
[old->new] type
reference

2. Add an [old object]
into Remember set
(RSet) if an old object
refer new objects

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 64

Root objects

new

old

new

oldold

traverse

traverse

Remember
ignore ignore

old

Remember
set (RSet)

GC Lecture

RGenGC: Background: GenGC
[Minor M&S GC] w/ RSet

1. Mark reachable
objects from root
objects
•Remembered objects

are also root objects

2. Sweep not (marked
or old) objects

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

Root objects

new

old

new

oldold

traverse

traverse

traverseignore ignore

old

Remember
set (RSet)

collect

new/
free

new/
free

65

traverse

GC Lecture

RGenGC: Background: GenGC
Write barrier

•To detect [old→new] type references, we
need to insert “Write-barrier” into
interpreter for all “Write” operation

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 66

newold

“Write barrier”
[Old->New] type reference

Detected!

GC Lecture

RGenGC: Background: GenGC
Write barriers in Ruby

•Write barrier (WB) example in Ruby world
• (Ruby) old_ary[0] = new0 # [old_ary → new0]
• (Ruby) old_obj.foo = new1 # [old_obj → new1]

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 67

GC Lecture

0

1

2

3

old_ary

new0

old_obj

foo

bar

new1

RGenGC: Background
Difficulty of inserting write barriers
•To introduce generational garbage collector,
WBs are necessary to detect [old→new] type
reference

•“Write-barrier miss” causes terrible failure
1. WB miss
2. Remember-set registration miss
3. (minor GC) marking-miss
4. Collect live object → Terrible GC BUG!!

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 68

GC Lecture

RGenGC: Problem
Inserting WBs into C-extensions (C-exts)
•All of C-extensions need perfect Write-barriers
• C-exts manipulate objects with Ruby’s C API
• C-level WBs are needed

•Problem: How to insert WBs into C-exts?
• There are many WB required programs in C-exts

• Example (C): RARRAY_PTR(old0)[0] = new1
• Ruby C-API doesn’t require WB before

• CRuby interpreter itself also uses C-APIs
•How to deal with?
•We can rewrite all of source code of CRuby interpreter to

add WB, with huge debugging effort!!
•We can’t rewrite all of C-exts which are written by 3rd

party

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 69

RGenGC: Problem
Inserting WBs into C-extensions (C-exts)

Performance Compatibility

1 Give up GenGC Poor
Good

(No problem)

2
GenGC with re-

writing all of C exts
Good

Most of C-exts
doesn’t work

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

Current
conservative

choice

70

Two options

Trade-off of Speed and Compatibility

RGenGC:
Related work on Ruby’s GenGC
•Kiyama, et. al. GenGC for CRuby
•Straightforward implementation for Ruby 1.6
•Need WBs in correct places
•High development cost
•Can’t keep compatibility → Drop all C-exts

•Nari, et.al longlife GC for CRuby
• Introduce GenGC only for Node object
•No compatibility issues because C-exts don’t use

node
•Now CRuby doesn’t use many number of node

objects
•High development cost (to guarantee WBs)

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 71

RGenGC:
Related work on Ruby’s GenGC

•Make interpreter with other language
infrastructures which have GC
• JRuby, IronRuby
•Can’t keep compatibility with current C-exts

•Separate core heap and CRuby C-ext heap
•High development cost

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 72

RGenGC: Challenge

•Trade-off of Speed and Compatibility
•Can we achieve both speed-up w/ GenGC and

keeping compatibility?

•Several possible approaches
•Separate heaps into the WB world and non-WB

world
• Need to re-write whole of Ruby interpreter

• Need huge development effort

•WB auto-insertion
• Modify C-compiler

• Need huge development effort
Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 73

RGenGC: Our approach

•Create new generational GC algorithm
permits WB protected objects AND WB un-
protected object in the same heap

RGenGC: Restricted Generational
Garbage Collection

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 74

RGenGC: Invent 3rd option

Performance Compatibility

1 Give up GenGC Poor
Good

(No problem)

2
GenGC with re-

writing all of C codes
Good

Most of C-exts
doesn’t work

3 Use new RGenGC Good
Most of C-exts

works!!

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

Ruby 2.1
choice

75

Breaking the trade off. You can praise us!!

RGenGC:
Key idea
•Introduce Shady object
• I use the word “Shady” as

questionable, doubtful, …
•Something feeling dark
•日陰者, in Japanese

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 76

RGenGC:
Key Idea
•Separate objects into two types
•Normal Object: WB Protected
•Shady Object: WB Unprotected

•We are not sure that a shady object points
new objects or not
•Decide this type at creation time
•A class care about WB → Normal object
•A class don’t care about WB → Shady object

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

Shady: doubtful,
questionable, ...

77

Shady
（´･ω･`）

Normal
＼（＾o＾）／

RGenGC:
Key Idea

•Normal objects can be
changed to Shady objects
• “Shade operation”
•C-exts don’t care about WB,

objects will be shady objects
•Example

• ptr = RARRAY_PTR(ary)

• In this case, we can’t insert WB for
ptr operation, so VM shade “ary”

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 78

Normal
obj

Shady
obj

VM

Shade

Create

Now, Shady object can’t
change into normal object

RGenGC
Key Idea: Rule

•Treat “Shady objects” correctly
•At Marking
1. Don’t promote shady objects to old objects
2. Remember shady objects pointed from old

objects
•At Shade operation for old normal objects
1. Demote objects
2. Remember shaded shady objects

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 79

RGenGC
[Minor M&S GC w/Shady object]

•Mark reachable objects
from root objects
•Mark shady objects, and

don’t promote to old
gen objects
• If shady objects pointed

from old objects, then
remember shady objects
by RSet.

→ Mark shady objects
every minor GC!!

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

Root objects

new

new

shady
new

traverse

traverse

traverse traverse

old

Remember
set (RSet)

collect

new/
free

new/
free

traverse

1st MinorGC

mark and
remember

remember

80

old

old

old

newold

RGenGC
[Minor M&S GC w/Shady object]

•Mark reachable objects
from root objects
•Mark shady objects, and

don’t promote to old
gen objects
• If shady objects pointed

from old objects, then
remember shady objects
by RSet.

→ Mark shady objects
every minor GC!!

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

Root objects

old

old

old

shady
old

traverse

ignore

ignore
ignore

old

Remember
set (RSet)

collect

new/
free

new/
free

traverse

traverse

2nd MinorGC

81

new

traverse

old

RGenGC
[Shade operation]

•Anytime Object can give up to
keep write barriers

→ [Shade operation]

•Change old normal objects to
shade objects
•Example: RARRAY_PTR(ary)
(1) Demote object (old → new)
(2) Register it to Remember Set

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

old

Shadyold

new

Remember
set (RSet)

82

RGenGC
Timing chart

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

Ruby Mark Sweep

Stop the (Ruby)
World

Sweep Sweep Sweep Sweep

2.0.0 GC (M&S w/lazy sweep)

w/RGenGC (Minor GC)

Ruby
Mark

Sweep

Stop the
(Ruby)
World

Sweep Sweep Sweep Sweep

• Shorter mark time (good)
• Same sweep time (not good)
• (little) Longer execution time b/c WB (bad)

83

RGenGC
Number of objects

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

2.0.0 GC (M&S)

of Living objects # of Freed objects

w/RGenGC (Minor GC)

of Living objects # of Freed objects

of old
objects
(#old)

of new
objects (#new)

of freed
but remembered

objects

(a) (b)

(a) # of old objects by WB
(b) # of shady objects pointed by old
(c) # of old but shady objects

(c)

84

RGenGC
Number of objects

Marking space Number of unused,
uncollected objs

Sweeping
space

Mark&Swep GC # of Living objects 0 Full heap

Traditional GenGC #new + (a) (a) #new

RGenGC #new + (a) + (b) + (c) (a) + (b) Full heap

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

w/RGenGC (Minor GC)

of Living objects # of Freed object

of old
object
(#old)

of new
object (#new)

of freed
but remembered

objects

(a) (b)

(c)
(a) # of old objects by WB
(b) # of shady objects pointed by old
(c) # of old but shady objects

85

RGenGC
Discussion: Pros. and Cons.

•Pros.
•Allow WB unprotected objects (shady objects)

• 100% compatible w/ existing extensions which don’t care about WB

• A part of CRuby interpreter which doesn’t care about WB

• Inserting WBs step by step, and increase
performance gradually
• We don’t need to insert all WBs into interpreter core at a time

• We can concentrate into popular (effective) classes/methods.

• We can ignore minor classes/methods.

•Simple algorithm, easy to develop (already done!)

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 86

RGenGC
Discussion: Pros. and Cons.

•Cons.
• Increasing “unused, but not collected objects until

full/major GC
• Remembered normal objects (caused by traditional GenGC algorithm)
• Remembered shady objects (caused by RGenGC algorithm)

•WB insertion bugs (GC development issue)
• RGenGC permit shady objects, but sunny objects need correct/perfect

WBs. But inserting correct/perfect WBs is difficult.
• This issue is out of scope. We have another idea against this problem

(out of scope).

• Can’t reduce Sweeping time
• But many (and easy) well-known techniques to reduce sweeping time

(out of scope).

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 87

RGenGC
Implementation: WB support status

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 88

Type name Status Comment

T_OBJECT Supported

T_CLASS Supported Possible to change into shady

T_ICLASS Supported Possible to change into shady

T_MODULE Supported Possible to change into shady

T_FLOAT Supported

T_STRING Supported

T_REGEXP Supported

T_ARRAY Supported Possible to change into shady / more efforts are needed

T_HASH Supported Possible to change into shady

T_STRUCT Supported

T_BIGNUM Supported

T_FILE Unsupported

T_DATA Supported Only InstructionSequence objects are supported

T_MATCH Unsupported Most of MatchData objects are short-lived

T_RATIONAL Supported

T_COMPLEX Supported

T_NODE Unsupported Most of Node objects are short-lived

RGenGC
Implementation
• Introduce two flags into RBasic
• FL_KEEP_WB: WB protected or not protected

• 0 → unprotected → Shady object
• 1 → protected → Sunny object
• Usage: NEWOBJ_OF(ary, struct RArray, klass, T_ARRAY | FL_KEEP_WB);

• FL_OLDGEN: Young gen or Old gen?
• 0 → Young gen
• 1 → Old gen
• Don’t need to touch by user program

•Remember set is represented by bitmaps
• Same as marking bitmap
• heap_slot::rememberset_bits
• Traverse all object area with this bitmap at first

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 89

RGenGC
Implementation: WB operation API

•OBJ_WRITE(a, &a->x, b)
•Declare ‘a’ aggregates ‘b’
•Write: *&a->x = b
•Write barrier
•OBJ_WRITE(a, b) returns “a”

•OBJ_WRITTEN(a, oldv, b)
•Declare ‘a’ aggregates ‘b’ and old value is ‘oldv’
•Non-write operation
•Write barrier

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 90

‘a’

‘&a->x’

oldv

b

RGenGC
Implementation: WB operation API
•T_ARRAY
•RARRAY_PTR(ary) causes shade operation

• Can’t get RGenGC performance improvement
• But works well

•Instead of RARRAY_PTR(ary), use alternatives
•RARRAY_AREF(ary, n) → RARRAY_PTR(ary)[n]
•RARRAY_ASET(ary, n, obj) → RARRAY_PTR(ary)[n] =

obj w/ Write-barrier
•RARRAY_PTR_USE(ary, ptrname, {...block...})

• Only in block, pointers can be accessed by `ptrname’ variable
(VALUE*).

• Programmers need to insert collect WBs (miss causes BUG).

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 91

RGenGC
Incompatibility

•Make RBasic::klass “const”
•Need WBs for a reference from an object to a

klass.
•Only few cases (zero-clear and restore it)
•Provide alternative APIs

• Now, RBASIC_SET_CLASS(obj, klass) and
RBASIC_CLEAR_CLASS(obj) is added. But they should be internal
APIs (removed soon).

• rb_obj_hide() and rb_obj_reveal() is provided.

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 92

RGenGC
Implementation

•RGENGC_CHECK_MODE in gc.c
•1: Enable assertions
•2: Enable “WB checking” mode

•WB checking mode
• (1) do minor GC
• (2) do major/full GC
• (3) compare result with (1) and (2)

• If living objects in (2) but not living in (1) it should be BUG!!

•Not a perfect (implementation limitation), but a
good method to detect bugs

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 93

RGenGC
Performance evaluation

•Ideal micro-benchmark for RGenGC
•Create many old objects at first
•Many new objects (many minor GC, no major GC)

•RDoc
•Same RDoc generation as Ruby’s trunk

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 94

RGenGC
Performance evaluation (micro)

0

100000000

200000000

300000000

400000000

500000000

600000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ex
e

cu
ti

o
n

 t
im

e
 b

y
R

D
TS

C

GC count

mark (RGENGC)

sweep (RGENGC)

mark

sweep

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

• Shorter mark time (good)
• Same sweep time (not good)

95

Same sweep
time

Good mark
time

* Disabled lazy sweep to measure correctly.

0

50

100

150

200

250

300

350

400

450

1

1
9

3
7

5
5

7
3

9
1

1
0

9

1
2

7

1
4

5

1
6

3

1
8

1

1
9

9

2
1

7

2
3

5

2
5

3

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Mark Time (ms)

Sweep Time (ms)

RGenGC: Mark Time (ms)

RGenGC: Sweep Time (ms)

RGenGC
Performance evaluation (RDoc)

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 96

Total GC count
is different

Several major/full
GC peaks

Faster minor
GC

RGenGC
Performance evaluation (RDoc)

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 97

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Mark Time (ms) Sweep Time (ms)

A
cc

u
m

u
la

te
d

 e
xe

cu
ti

o
n

 t
im

e
(m

s)

M&S RGenGC

About x7 speedup!

* Disabled lazy sweep to measure correctly.

136.613831 136.5777977

48.71345729
14.9694922

0

50

100

150

200

M&S RGenGC

To
ta

l e
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Exec time (sec) GC time (sec)

RGenGC
Performance evaluation (RDoc)

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 98

About 20% speedup!

* Disabled lazy sweep to measure correctly.

RGenGC: Summary

•RGenGC: Restricted Generational GC
•New GC algorithm allow mixing “Write-barrier

protected objects” and “WB unprotected objects”
•No (mostly) compatibility issue with C-exts

•Inserting WBs gradually
•We can concentrate WB insertion efforts for major

objects and major methods

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 99

RGenGC
Future work
•Minor GC / Major GC timing tuning
•Too many major GC → slow down
•Too few major GC → memory consumption issue

•Inserting WBs w/ application profiling
•Profiling system
•Benchmark programs

•Debugging/Detecting system for WBs bugs

•Improve sweeping performance

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 100

Ruby 2.1

Other internal features

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 101

Ruby 2.1 expected “internal” features

•Parallel sweeping
• Sophisticated inline cache invalidation mechanism
•Memory efficient string management & Symbol GC
• Fine-grain memory protection to detect WB insertion

miss
• Signal thread
•More efficient inter-process migration technique
• JIT compilation for small part of Ruby code
• Introduce fastpath C-methods
• Inlined Proc.call invocation
•AOT Compiler and extending “require” behavior
•Useful debugger

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 102

Parallel sweeping
Background

•RGenGC improve performance only for
“marking” phase

•RGenGC doesn’t improve “sweeping phase”
performance

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 103

Parallel sweeping
Background (revisit Rdoc evaluation)

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 104

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Mark Time (ms) Sweep Time (ms)

A
cc

u
m

u
la

te
d

 e
xe

cu
ti

o
n

 t
im

e
(m

s)

M&S RGenGC

Almost same

Parallel sweeping
Background (revisit RGenGC Timing chart)

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

Ruby Mark Sweep

Stop the (Ruby)
World

Sweep Sweep Sweep Sweep

2.0.0 GC (M&S w/lazy sweep)

w/RGenGC (Minor GC)

Ruby
Mark

Sweep

Stop the
(Ruby)
World

Sweep Sweep Sweep Sweep

• Shorter mark time (good)
• Same sweep time (not good)
• (little) Longer execution time b/c WB (bad)

105

Parallel sweeping
Introduce sweeping threads (ideal)

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 106

w/RGenGC (Minor GC)

Ruby
Mark

Sweep

Stop the
(Ruby)
World

Sweep Sweep Sweep Sweep

w/RGenGC (Minor GC) w/Parallel sweeping

Ruby
Mark

Sweep

Stop the
(Ruby)
World

Sweep in parallel Wait for next GC
Sweeping thread

Parallel sweeping
Ideal

•Hide most of sweeping time

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 107

Parallel sweeping
Real

•Increase synchronization cost

•Increase program complexity

•Our preliminary evaluation (implemented in
one night, buggy one) doesn’t show good
score

•To be continued…

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 108

Sophisticated inline cache
invalidation mechanism

•From Ruby 1.9 (YARV), inline cache technique
is used in several codes
• Inline method caching ← Huge opportunity
•Constant lookup
•…

•Cache invalidation with only one variable
“global_state_version”

•Invalidate inline cache, other non-related
inline caches are also invalidated

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 109

Sophisticated inline cache
invalidation mechanism

•Invalidate all classes’ method cache

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 110

Object

X Y Z

X1 X2 Z1 Z2

Redefine X,
invalidate all of

classes

X1a

Sophisticated inline cache
invalidation mechanism

“This patch adds class hierarchy method
caching to CRuby. This is the algorithm used by
JRuby and Rubinius.”

[ruby-core:55053] [ruby-trunk - Feature #8426][Open]
Implement class hierarchy method caching

by Charlie Somerville

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 111

Sophisticated inline cache
invalidation mechanism

•Invalid only sub-classes under effective class

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 112

Object

X Y Z

X1 X2 Z1 Z2

Redefine X,
invalidate X and
X’s subclasses

X1a

Memory efficient string management

•Each string has their string body (space
acquired by malloc())

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 113

ptr

String

“String body”

Memory efficient string management

•For some strings have same “string body”,
they has own string body each other.

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 114

ptr

String

“String body”

ptr

String

“String body”

ptr

String

“String body”

ptr

String

“String body”

ptr

String

“String body”

ptr

String

“String body”

Memory efficient string management

•It can be shared by strings w/ dirty bit.

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 115

ptr

String

“String body”
(shared by 5 places)

ptr

String

ptr

String

ptr

String

ptr

String

→ Reduce memory consumption!!

† Sharing string body is implemented now
if a string object is duped.
This technique is more aggressive approach.

Memory efficient string management

•This mechanism can work with Symbol
management

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 116

ptr

String

“String body”
(shared by 5 places)

ptr

String

ptr

String

ptr

String

ptr

String

→ GC-able Symbol

Questions and answers

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 117

Questions and Answers
RGenGC and CoW friendly

•No problem because only touch flags for
oldgen and shady

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 118

Questions and Answers
GC + Threads

•Parallel GC
•Run GC process in parallel (simultaneously)
•Parallel marking
•Parallel sweeping (in today’s talk)

•Concurrent GC / Incremental GC
•Run ruby threads (mutator threads) and GC threads

concurrently
•Major GC consumes huge time (same as current

GC) → Need concurrent GC to reduce pause time
•New WB API is also designed for concurrent GC

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 119

Agenda

•Ruby’s rough history
•Ruby 2.1 new “internal” features
• Internal object management hooks

• Object allocation tracing
• GC hooks

• RGenGC: Restricted Generational Garbage
Collection ← Today’s main topic

•Ruby 2.1 expected “internal” features
• Parallel sweeping
• Sophisticated inline cache invalidation mechanism
•Memory efficient string management

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 120

Summary

•We are implementing new features and
improving Ruby’s quality for Ruby 2.1

•Especially introducing new “Generational
garbage collector” will achieve huge
performance improvement

•Ruby 2.1 is currently scheduled on Dec 25,
2013. Don’t miss it!

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 121

Thank you

Koichi Sasada
Heroku, Inc.

<ko1@heroku.com>

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 122

