
Toward efficient
Ruby 2.1

Koichi Sasada
<ko1@heroku.com>

Heroku, Inc.
RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 1

Agenda

•Ruby 2.1 Schedule
•Ruby 2.1 new “internal” features
• Internal object management hooks

• Object allocation tracing
• GC hooks

• RGenGC: Restricted Generational Garbage
Collection ← Today’s main topic

•Ruby 2.1 expected “internal” features
• Sophisticated inline cache invalidation mechanism
•Memory efficient string management
•Useful debugger

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 2

Summary

•We are implementing new features and
improving Ruby’s quality for Ruby 2.1

•Especially introducing “Generational garbage
collector” which I’m working on will improve
huge performance

•Ruby 2.1 is currently scheduled on Dec 25,
2013

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 3

Quoted “2.1”

“2:1 And there went a man of the house of
Levi, and took to wife a daughter of Levi.”

- Book of Exodus

“2:1 さて、レビの家のひとりの人が行ってレビ
の娘をめとった。”

-出エジプト記

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 4

Quoted “2.1”

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 5

In this presentation,
there are some quoted “2.1” sentence.

Idea of “Quoting” is from
“Things a Computer Scientist Rarely Talks About”

“コンピュータ科学者がめったに語らないこと”
by Donald E. Knuth

But no consideration in this presentation about them.

Who am I ?

•笹田耕一 (Koichi Sasada)
• Matz team at Heroku, Inc.

• Full-time CRuby development

•CRuby/MRI committer
• Virtual machine (YARV) from Ruby 1.9
• YARV development since 2004/1/1

6

7

ko1 @ Tokyo
EDD developer

Matz @ Shimane
Title collector

Communication
with Skype

Matz team at Heroku, Inc.
Hierarchy

Nobu @ Tochigi
Drunker

Recent status

•5/2 I got sprain…

•5/27 I got cold…

•All: Please care about
yourself
•Especially, do not walk

with book reading

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 8

My leg with a bivalve cast

“Object-oriented scripting language Ruby is a
programming language designed by Matsumoto.”

- Efficient Implementation of Ruby Virtual Machine

Doctoral thesis by Koichi Sasada

“オブジェクト指向スクリプト言語Rubyは，松本によっ
て設計されたプログラミング言語である．”

-高速なRuby用仮想マシンの開発

笹田耕一, 博士論文

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 9

Quoted “2.1”

Ruby’s rough history

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 10

1993 2/24
Birth of Ruby
(in Matz’ computer)

1995/12
Ruby 0.95
1st release

1996/12
Ruby 1.0

1998/12
Ruby 1.2

1999/12
Ruby 1.4

2000/6
Ruby 1.6

2003/8
Ruby 1.8

2009/1
Ruby 1.9.0

2013/02
Ruby 2.0.0

2004～
Ruby on Rails

2000 Book:
Programming Ruby

2012/4
ISO Ruby

2004/1
Start YARV proj.

Quoted “2.1”

“2.1 Changes from Ruby 1.9
Added and modified libraries from Ruby 1.9 are
follows”

- Programming Ruby 1.9 Library edition

by Dave Thomas, with Chad Fowler and Andy Hunt

“2.1 Ruby 1.9のライブラリの変更点
Ruby 1.9で追加または変更されたライブラリは次
のとおりです。”

-プログラミングRuby 1.9 ライブラリ編

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 11

Ruby 2.0

•New features (see Rubyist Magazine)
•Keyword arugments
•Refinements
•Module#prepend

•Ruby 2.0.0-p195 was already released

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 12

-*- rdoc -*-

= NEWS for Ruby 2.0.0

This document is a list of user visible feature
changes made between

releases except for bug fixes.

Note that each entry is kept so brief that no reason
behind or

reference information is supplied with. For a full
list of changes

with all sufficient information, see the ChangeLog
file.

== Changes since the 1.9.3 release

=== C API updates

* NUM2SHORT() and NUM2USHORT() added. They
are similar to NUM2INT, but short.

* rb_newobj_of() and NEWOBJ_OF() added. They
create a new object of a given class.

=== Library updates (outstanding ones only)

* builtin classes

* Array

* added method:

* added Array#bsearch for binary search.

* incompatible changes:

* random parameter of Array#shuffle! and
Array#sample now

will be called with one argument, maximum
value.

* when given Range arguments, Array#values_at
now returns nil for each

value that is out-of-range.

* Enumerable

* added method:

* added Enumerable#lazy method for lazy
enumeration.

* Enumerator

* added method:

* added Enumerator#size for lazy size
evaluation.

* extended method:

* Enumerator.new accept an argument for lazy
size evaluation.

* ENV

* aliased method:

* ENV.to_h is a new alias for ENV.to_hash

* Fiber

* incompatible changes:

* Fiber#resume cannot resume a fiber which
invokes "Fiber#transfer".

* File

* extended method:

* File.fnmatch? now expands braces in the
pattern if

File::FNM_EXTGLOB option is given.

* GC

* improvements:

* introduced the bitmap marking which
suppresses to copy a memory page

with Copy-on-Write.

* introduced the non-recursive marking which
avoids unexpected stack overflow.

* GC::Profiler

* added method:

* added GC::Profiler.raw_data which returns
raw profile data for GC.

* Hash

* added method:

* added Hash#to_h as explicit conversion
method, like Array#to_a.

* extended method:

* Hash#default_proc= can be passed nil to clear
the default proc.

* Kernel

* added method:

* added Kernel#Hash conversion method like
Array() or Float().

* added Kernel#using, which imports
refinements into the current scope.

[experimental]

* added Kernel#__dir__ which returns a current
dirname.

* added Kernel#caller_locations which returns
an array of

frame information objects.

* extended method:

* Kernel#warn accepts multiple args in like puts.

* Kernel#caller accepts second optional
argument `n' which specify

required caller size.

* Kernel#to_enum and enum_for accept a block
for lazy size evaluation.

* incompatible changes:

* system() and exec() closes non-standard file
descriptors

(The default of :close_others option is changed
to true by default.)

* respond_to? against a protected method now
returns false unless

the second argument is true.

* __callee__ has returned to the original
behavior, and now

returns the called name but not the original
name in an

aliased method.

* Kernel#inspect does not call #to_s anymore

(it used to call redefined #to_s).

* LoadError

* added method:

* added LoadError#path method to return the
file name that could not be

loaded.

* Module

* added method:

* added Module#prepend which is similar to
Module#include,

however a method in the prepended module
overrides the

corresponding method in the prepending
module.

* added Module#refine, which extends a class
or module locally.

[experimental]

* added Module#refinements, which returns
refinements defined in the

receiver. [experimental]

* added Module#using, which imports
refinements into the receiver.

[experimental]

* extended method:

* Module#define_method accepts a
UnboundMethod from a Module.

* Module#const_get accepts a qualified
constant string, e.g.

Object.const_get("Foo::Bar::Baz")

* Mutex

* added method:

* added Mutex#owned? which returns the
mutex is held by current

thread or not. [experimental]

* incompatible changes:

* Mutex#lock, Mutex#unlock, Mutex#try_lock,
Mutex#synchronize

and Mutex#sleep are no longer allowed to be
used from trap handler

and raise a ThreadError in such case.

* Mutex#sleep may spurious wakeup. Check
after wakeup.

* NilClass

* added method:

* added nil.to_h which returns {}

* Process

* added method:

* added getsid for getting session id (unix only).

* Range

* added method:

* added Range#size for lazy size evaluation.

* added Range#bsearch for binary search.

* Signal

* added method:

* added Signal.signame which returns signal
name

* incompatible changes:

* Signal.trap raises ArgumentError
when :SEGV, :BUS, :ILL, :FPE, :VTALRM

are specified.

* String

* added method:

* added String#b returning a copied string
whose encoding is ASCII-8BIT.

* change return value:

* String#lines now returns an array instead of an
enumerator.

* String#chars now returns an array instead of
an enumerator.

* String#codepoints now returns an array
instead of an enumerator.

* String#bytes now returns an array instead of
an enumerator.

* Struct

* added method:

* added Struct#to_h returning values with keys
corresponding to the

instance variable names.

* Thread

* added method:

* added Thread#thread_variable_get for getting
thread local variables

(these are different than Fiber local variables).

* added Thread#thread_variable_set for setting
thread local variables.

* added Thread#thread_variables for getting a
list of the thread local

variable keys.

* added Thread#thread_variable? for testing to
see if a particular thread

variable has been set.

* added Thread#backtrace_locations which
returns similar information of

Kernel#caller_locations.

* incompatible changes:

* Thread#join and Thread#value now raises a
ThreadError if target thread

is the current or main thread.

* Time

* change return value:

* Time#to_s returned encoding defaults to US-
ASCII but automatically

transcodes to Encoding.default_internal if it is
set.

* TracePoint

* new class. This class is replacement of
set_trace_func.

Easy to use and efficient implementation.

* toplevel

* added method:

* added main.define_method which defines a
global function.

* cgi

* Add HTML5 tag maker.

* CGI#header has been renamed to
CGI#http_header and

aliased to CGI#header.

* When HTML5 tagmaker called, overwrite
CGI#header,

CGI#header function is to create a <header>
element.

* iconv

* Iconv has been removed. Use String#encode
instead.

* io/wait

* new features:

* added IO#wait_writable method.

* added IO#wait_readable method as alias of
IO#wait.

* net/http

* new features:

* Proxies are now automatically detected from
the http_proxy environment

variable. See Net::HTTP::new for details.

* gzip and deflate compression are now
requested for all requests by

default. See Net::HTTP for details.

* SSL sessions are now reused across connections
for a single instance.

This speeds up connection by using a previously
negotiated session.

* new methods:

* Net::HTTP#local_host

* Net::HTTP#local_host=

* Net::HTTP#local_port

* Net::HTTP#local_port=

* extended method:

* Net::HTTP#connect uses local_host and
local_port if specified.

* net/imap

* new methods:

* Net::IMAP.default_port

* Net::IMAP.default_imap_port

* Net::IMAP.default_tls_port

* Net::IMAP.default_ssl_port

* Net::IMAP.default_imaps_port

* objspace

* new method:

* ObjectSpace.reachable_objects_from(obj)

* openssl

* Consistently raise an error when trying to
encode nil values. All instances

of OpenSSL::ASN1::Primitive now raise TypeError
when calling to_der on an

instance whose value is nil. All instances of
OpenSSL::ASN1::Constructive

raise NoMethodError in the same case.
Constructing such values is still

permitted.

* TLS 1.1 & 1.2 support by setting
OpenSSL::SSL::SSLContext#ssl_version to

:TLSv1_2, :TLSv1_2_server, :TLSv1_2_client
or :TLSv1_1, :TLSv1_1_server

:TLSv1_1_client. The version being effectively
used can be queried

with OpenSSL::SSL#ssl_version. Furthermore, it is
also possible to

blacklist the new TLS versions with
OpenSSL::SSL:OP_NO_TLSv1_1 and

OpenSSL::SSL::OP_NO_TLSv1_2.

* Added
OpenSSL::SSL::SSLContext#renegotiation_cb. A
user-defined callback

may be set which gets called whenever a new
handshake is negotiated. This

also allows to programmatically decline (client)
renegotiation attempts.

* Support for "0/n" splitting of records as BEAST
mitigation via

OpenSSL::SSL::OP_DONT_INSERT_EMPTY_FRAGME
NTS.

* OpenSSL requires passwords for decrypting
PEM-encoded files to be at least

four characters long. This led to awkward
situations where an export with

a password with fewer than four characters was
possible, but accessing the

file afterwards failed. OpenSSL::PKey::RSA,
OpenSSL::PKey::DSA and

OpenSSL::PKey::EC therefore now enforce the
same check when exporting a

private key to PEM with a password - it has to be
at least four characters

long.

* SSL/TLS support for the Next Protocol
Negotiation extension. Supported

with OpenSSL 1.0.1 and higher.

* OpenSSL::OPENSSL_FIPS allows client
applications to detect whether OpenSSL

is running in FIPS mode and to react to the
special requirements this

might impy.

* ostruct

* new methods:

* OpenStruct#[], []=

* OpenStruct#each_pair

* OpenStruct#eql?

* OpenStruct#hash

* OpenStruct#to_h converts the struct to a hash.

* extended method:

* OpenStruct.new also accepts an OpenStruct /
Struct.

* pathname

* extended method:

* Pathname#find returns an enumerator if no
block is given.

* rake

* rake has been updated to version 0.9.5.

This version is backwards-compatible with
previous rake versions and

contains many bug fixes.

See

http://rake.rubyforge.org/doc/release_notes/rake-
0_9_5_rdoc.html for a list

of changes in rake 0.9.3, 0.9.4 and 0.9.5.

* rdoc

* rdoc has been updated to version 4.0

This version is largely backwards-compatible with
previous rdoc versions.

The most notable change is an update to the ri
data format (ri data must

be regenerated for gems shared across rdoc
versions). Further API changes

are internal and won't affect most users.

See
https://github.com/rdoc/rdoc/blob/master/History
.rdoc for a list of

changes in rdoc 4.0.

* resolv

* new methods:

* Resolv::DNS#timeouts=

* Resolv::DNS::Config#timeouts=

* rexml

* REXML::Document#write supports Hash
arguments.

* REXML::Document#write supports
new :encoding option. It changes

XML document encoding. Without :encoding
option, encoding in

XML declaration is used for XML document
encoding.

* RubyGems

* Updated to 2.0.0.preview2

RubyGems 2.0.0 features the following
improvements:

* Improved support for default gems shipping
with ruby 2.0.0+

* A gem can have arbitrary metadata through
Gem::Specification#metadata

* `gem search` now defaults to --remote and is
anchored like gem list.

* Added --document to replace --rdoc and --ri.
Use --no-document to

disable documentation, --document=rdoc to
only generate rdoc.

* Only ri-format documentation is generated by
default.

* `gem server` uses RDoc::Servlet from RDoc 4.0
to generate HTML

documentation.

For an expanded list of updates and bug fixes see:

https://github.com/rubygems/rubygems/blob/mas
ter/History.txt

* shellwords

* Shellwords#shellescape() now stringifies the
given object using to_s.

* Shellwords#shelljoin() accepts non-string
objects in the given

array, each of which is stringified using to_s.

* syslog

* Added Syslog::Logger which provides a Logger
API atop Syslog.

* Syslog::Priority, Syslog::Level, Syslog::Option and
Syslog::Macros

are introduced for easy detection of available
constants on a

running system.

* tmpdir

* incompatible changes:

* Dir.mktmpdir uses FileUtils.remove_entry
instead of

FileUtils.remove_entry_secure. This means that
applications should not

change the permission of the created temporary
directory to make

accessible from other users.

* yaml

* Syck has been removed. YAML now completely
depends on libyaml being

installed.

* zlib

* Added streaming support for Zlib::Inflate and
Zlib::Deflate. This allows

processing of a stream without the use of large
amounts of memory.

* Added support for the new deflate strategies
Zlib::RLE and Zlib::FIXED.

* Zlib streams are now processed without the GVL.
This allows gzip, zlib and

deflate streams to be processed in parallel.

=== Language changes

* Added %i and %I for symbol list creation (similar
to %w and %W).

* Default source encoding is changed to UTF-8.
(was US-ASCII)

=== Compatibility issues (excluding feature bug
fixes)

* Array#values_at

See above.

* String#lines

* String#chars

* String#codepoints

* String#bytes

These methods no longer return an Enumerator,
although passing a

block is still supported for backwards
compatibility.

Code like str.lines.with_index(1) { |line,
lineno| ... } no longer

works because str.lines returns an array. Replace
lines with

each_line in such cases.

* Signal.trap

See above.

* Merge Onigmo.

https://github.com/k-takata/Onigmo

* The :close_others option is true by default for
system() and exec().

Also, the close-on-exec flag is set by default for
all new file descriptors.

This means file descriptors doesn't inherit to
spawned process unless

explicitly requested such as system(..., fd=>fd).

* Kernel#respond_to? against a protected method
now returns false

unless the second argument is true.

* Dir.mktmpdir in lib/tmpdir.rb

See above.

* OpenStruct new methods can conflict with
custom attributes named

"each_pair", "eql?", "hash" or "to_h".

* Thread#join, Thread#value

See above.

* Mutex#lock, Mutex#unlock, Mutex#try_lock,
Mutex#synchronize and Mutex#sleep

See above.

NEWS file of Ruby 2.0
Many new features!!

13

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 14

“Ruby is almost matured as a
programming language with 2.0 ”
http://itpro.nikkeibp.co.jp/article/NEWS/20130214/456322/

Ruby 2.1 release announcement

“I‘m planning to call for feature proposals soon like
2.0.0 [ruby-core:45474], so if you have a suggestion
you should begin preparing the proposal.”

“ちなみに、Ruby 2.1.0 は2013年12月25日のリリース
を予定しています。そのうち 2.0.0 の時のように機能提
案募集をするつもりなので、われこそをという方はそろ
そろネタの仕込みを始めてくださいませ。”

- [ruby-core:54726] Announce take over the release
manager of Ruby 2.1.0

by NARUSE, Yui
RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 15

Ruby 2.1 schedule

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 16

2013/02
Ruby 2.0.0

2013/12
Ruby 2.1.0

RubyKaigi2013
5/30, 31, 6/1

RubyConf2013
11/8-10

Euruko2013
6/28, 29

Events are important for
EDD (Event Driven Development) Developers

Ruby 2.1

•New features

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 17

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 18

-*- rdoc -*-

= NEWS for Ruby 2.1.0

This document is a list of user visible feature changes made between
releases except for bug fixes.

Note that each entry is kept so brief that no reason behind or
reference information is supplied with. For a full list of changes
with all sufficient information, see the ChangeLog file.

== Changes since the 2.0.0 release

=== Language changes
=== Core classes updates (outstanding ones only)

* GC
* added environment variable:
* RUBY_HEAP_SLOTS_GROWTH_FACTOR: growth rate of the heap.

* IO
* extended methods:
* IO#seek accepts symbols (:CUR, :END, :SET) for 2nd argument.

* Kernel
* New methods:
* Kernel#singleton_method

* Mutex
* misc
* Mutex#owned? is no longer experimental.

* String
* New methods:
* String#scrub and String#scrub! verify and fix invalid byte sequence.

* extended methods:
* If invalid: :replace is specified for String#encode, replace
invalid byte sequence even if the destination encoding equals to
the source encoding.

* pack/unpack (Array/String)
* Q! and q! directives for long long type if platform has the type.

=== Core classes compatibility issues (excluding feature bug fixes)

* IO
* incompatible changes:
* open ignore internal encoding if external encoding is ASCII-8BIT.

* Module#ancestors

The ancestors of a singleton class now include singleton classes,
in particular itself.

=== Stdlib updates (outstanding ones only)

* Digest
* extended methods:
* Digest::Class.file takes optional arguments for its constructor

* Matrix
* Added Vector#cross_product.

* Net::SMTP
* Added Net::SMTP#rset to implement the RSET command

* Pathname
* New methods:
* Pathname#write
* Pathname#binwrite

* OpenSSL::BN
* extended methods:
* OpenSSL::BN.new allows Fixnum/Bignum argument.

* open-uri
* Support multiple fields with same field name (like Set-Cookie).

* Resolv
* New methods:
* Resolv::DNS.fetch_resource

* One-shot multicast DNS support
* Support LOC resources

* Rinda::RingServer, Rinda::RingFinger
* Rinda now supports multicast sockets. See Rinda::RingServer and
Rinda::RingFinger for details.

* Socket
* New methods:
* Socket.getifaddrs

* StringScanner
* extended methods:
* StringScanner#[] supports named captures.

* Tempfile
* New methods:
* Tempfile.create

=== Stdlib compatibility issues (excluding feature bug fixes)

* URI
* incompatible changes:
* URI.decode_www_form follows current WHATWG URL Standard.
It gets encoding argument to specify the character encoding.
It now allows loose percent encoded strings, but denies ;-separator.

* URI.encode_www_form follows current WHATWG URL Standard.
It gets encoding argument to convert before percent encode.
UTF-16 strings aren't converted to UTF-8 before percent encode by default.

=== C API updates

See NEWS file
Now, much smaller than Ruby 2.0

“Character set and CES which application should support is
different by users. However, it is not high priority to support
one application supports multi-CES.”

- Implementation of Practical Multilingual Text Manipulation for Ruby (academic paper)

by Yukihiro Matsumoto

(translated by Koichi Sasada)

“アプリケーションが対応すべき文字集合およびCESはユーザ
ごとに異なるが、1つのアプリケーションが同時に複数のCES
に対応する必要性はさほど高くない。”

- Ruby における実用的な多言語処理の実装（論文）

松本行弘
RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 19

Quoted “2.1”

Ruby 2.1 features

•Refine m17n introduced from Ruby 1.9
•String#scrub, String#scrub!

• Verify and fix invalid byte sequence.

•More efforts? I heard Matz has some ideas.

•Refine features introduced from Ruby 2.0
•Keyword arguments
•Refinements
•Module#prepend

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 20

21

Quote about 2.0 from Heroku blog

22

Of course, Ruby 2.0.0 is ready on Heroku!

23

Me!

24

Mention about “Speed”
Ruby 2.0 has a faster garbage collector and is Copy on
Write friendly. Copy on Write or COW is an optimization
that can reduce the memory footprint of a Ruby process
when it is copied. Instead of allocating duplicate
memory when a process is forked, COW allows multiple
processes to share the same memory until one of the
processes needs to modify a piece of information.
Depending on the program, this optimization can
dramatically reduce the amount of memory used to run
multiple processes. Most Ruby programs are memory
bound, so reducing your memory footprint with Ruby
2.0 may allow you to run more processes in fewer dynos.
If you’re not already running a concurrent backend
consider trying the Unicorn web server.

25

Short summary: GC uses bitmap
marking and CoW friendly

Short summary: Let’s try Unicorn!

http://en.wikipedia.org/wiki/Copy-on-write
https://blog.heroku.com/archives/2013/2/27/unicorn_rails

26

（；ﾟ Дﾟ）

Only mention about GC!!??
(I don’t work on GC)

27

｡+.｡ヽ(*>∀<*)ﾉ｡.+。

Let’s consider about
GC/memory management!

Ruby 2.1 internal features

•Internal hooks for memory management

•RGenGC: Restricted generational garbage
collection

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 28

Today’s topic

Internal hooks for memory management
What’s nice?

•You can collect more detailed analysis

•Examples
•Collect object allocation site information
•Collect usage of allocated objects
•Measure GC performance from outside

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 29

Internal hooks for memory management

•Added events
• RUBY_INTERNAL_EVENT_NEWOBJ

• When object is created

• RUBY_INTERNAL_EVENT_FREEOBJ
• When object is freed

• RUBY_INTERNAL_EVENT_GC_START
• When GC is started

• RUBY_INTERNAL_EVENT_GC_END
• When GC is finished

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 30

Ruby

Mark
Sweep

Stop the
(Ruby)
World

Sweep Sweep Sweep Sweep

GC
Start

GC
End

Internal hooks for memory management
Caution

•You can *NOT* trace these events using
TracePoint (introduced from 2.0)

•You need to write C-ext to use them, because
events are invoked during GC, etc

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 31

Internal hooks for memory management
Sample features

•ObjectSpace. trace_object_allocations
•Trace object allocation and record allocation-site

• Record filename, line number, creator method’s id and class

•Usage:
ObjectSpace.trace_object_allocations{ # record only in the block

o = Object.new

file = ObjectSpace.allocation_sourcefile(o) #=> __FILE__

line = ObjectSpace.allocation_sourceline(o) #=> __LINE__ -2

}

•Demonstration

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 32

Internal hooks for memory management
Postponed job

•You may want to write hooks in Ruby

→ Use ‘Postponed job’
• ‘Postponed jobs’ run at same timing as finalizers
•Usage: rb_postponed_job_register(func, data)
• `func(data)’ will be called at a safe-point

•See an sample code in “ext/objspace/gc_hooks.c”
•ObjectSpace.after_gc_(start|end) = proc{GC.start}
•Proc is called after GC

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 33

“2.1 Structure of VALUE and objects

In ruby, the contents of an object is expressed by a C structure,
always handled via a pointer. A different kind of structure is used for
each class, but the pointer type will always be VALUE.”

- Ruby Hacking Guide

by Minero Aoki

“2.1 VALUEとオブジェクト構造体

rubyではオブジェクトの実体を構造体で表現し、扱うときは常にポ
インタ経由で扱う。構造体のほうはクラスごとに違う型を使うが、
ポインタのほうはどのクラスの構造体でも常にVALUE型だ。 “

- Rubyソースコード完全解説

青木峰郎

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 34

Quoted “2.1”

RGenGC: Summary

•RGenGC: Restricted Generational GC
•New GC algorithm allows mixing “Write-barrier

protected objects” and “WB unprotected objects”
•No (mostly) compatibility issue with C-exts

•Inserting WBs gradually
•We can concentrate WB insertion efforts for major

objects and major methods
•Now, Array, String, Hash, Object, Numeric objects

are WB protected
• Array, Hash, Object, String objects are very popular in Ruby

• Array objects using RARRAY_PTR() change to WB unprotected
objects (called as Shady objects), so existing codes still works.

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 35

RGenGC: Agenda

•Background
•Generational GC
•Ruby’s GC strategy

•Proposal: RGenGC
•Separating into sunny and shady objects
•Shady objects at marking
•Shade operation

•Implementation

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 36

RGenGC: Background
Current CRuby’s GC
•Mark & Sweep
•Conservative
• Lazy sweep
•Bitmap marking
•Non-recursive marking

•C-friendly strategy
•Don’t need magical macros in C source codes
•Many many C-extensions under this strategy

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 37

Quoted “2.1”

“2.1 About Mark&Sweep GC
Mark&Sweep GC consists of mark and sweep phase.”

- Garbage Collection-Algorithms and Implementations
By Narihiro Nakamura, Hikaru Aikawa

(translated by Koichi Sasada)

“2.1
マークスイープGCはその名の通り、マークフェーズと
スイープフェーズから成ります。”

-ガベージコレクションのアルゴリズムと実装
By 中村成洋、相川光

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 38

RGenGC: Background
Mark & Sweep

1. Mark reachable
objects from root
objects

2. Sweep unmarked
objects (collection
and de-allocation)

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

Root objects

marked

marked marked

free

markedmarked

traverse

traverse traverse

traverse traverse

free

free

Collect
unreachable

objects

39

RGenGC: Background
Generational GC (GenGC)

•Weak generational hypothesis: Most objects die
young → Concentrating reclamation effort on the
youngest objects

•Separate young generation and old generation
•Create objects as young generation
•Promote to old generation after surviving nth GC
• In CRuby, n == 1 (after 1 GC, objects become old)

•Usually, GC on young space (minor GC)

•GC on both spaces if no memory (major/full GC)

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 40

RGenGC: Background
Generational GC (GenGC)

•Minor GC and Major GC can use different GC
algorithm
•Popular combination

→ Minor GC: Copy GC, Major GC: M&S
•On the CRuby’s: both Minor&Major GCs should

be M&S because CRuby’s GC (and existing codes)
based on conservative M&S algorithm

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 41

RGenGC: Background: GenGC
[Minor M&S GC]

•Mark reachable objects
from root objects.
•Mark and promote to old

gen
• Stop traversing after old

objects
→ Reduce mark overhead
•Sweep not (marked or
old) objects

•Can’t collect Some
unreachable objects
•

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

Root objects

new

new new

new/
free

newnew

traverse

traverse traverse

traverse traverse

new/
free

old/
free

Don’t collect old object
even if it is unreachable.

collect

1st MinorGC

42

RGenGC: Background: GenGC
[Minor M&S GC]

•Mark reachable objects
from root objects.
•Mark and promote to old

gen
• Stop traversing after old

objects
→ Reduce mark overhead
•Sweep not (marked or
old) objects

•Can’t collect Some
unreachable objects
•

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

Root objects

old

old old

new/
free

oldold

traverse

ignore ignore

ignore ignore

new/
free

old/
free

Don’t collect old object
even if it is unreachable.

collect

2nd MinorGC

43

RGenGC: Background: GenGC
[Major M&S GC]

• Normal M&S

• Mark reachable objects from
root objects
• Mark and promote to old gen

• Sweep unmarked objects

• Sweep all unreachable
(unused) objects

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

Root objects

new

old new

new/
free

oldold

traverse

traverse traverse

traverse traverse

new/
free

old/
free

collect

collect

44

Quoted “2.1”

“2.1 The mark-sweep algorithm

From the viewpoint of the garbage collector,
mutator threads perform just three operations
of interest, New, Read and Write, which each
collection algorithm must redefine
appropriately.”

- The Garbage Collection Handbook

by Richard Jones, Antony Hosking, Eliot Moss

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 45

RGenGC: Background: GenGC
WB & Remember Set (RSet)

•Old objects refer young
objects

→ Minor GC causes

marking leak!!
•Because minor GC ignores

referenced objects by old
objects

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

old

oldold

new

Can’t mark new object!
→ Sweeping living object! (BUG)

46

RGenGC: Background: GenGC
WB & Remember Set (RSet)

•Add an old object into
Remember set (RSet) if an
old object refer new
objects
•At minor GC, mark all

remembered objects

•To detect [old→new] type
references, insert “Write-
barrier”
• “Generating references” ==

“Write”
RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

old

oldold

new

Remember
set (RSet)

47

new new

RGenGC: Background: GenGC
[Minor M&S GC] w/ RSet

•Mark reachable
objects from root
objects
•Remembered objects

are also root objects
• Stop traversing after old

objects

•Sweep not (marked or
old) objects

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

Root objects

new

old

new

oldold

traverse

traverse

traverse

ignore ignore

old

Remember
set (RSet)

collect

new/
free

new/
free

48

RGenGC: Problem
Write-barrier (WB) and CRuby
•To introduce generational garbage collector, WBs
are necessary to detect [old→new] type reference
•Write-barrier (WB) example in Ruby world
• (Ruby) old0[0] = new0 # [old0 → new0]
• (Ruby) old1.foo = new0 # [old1 → new1]

•Write-barriers miss causes terrible failure
•WB miss

→ Remember-set registration miss
→ (minor GC) marking-miss → Terrible GC BUG!!

•All of C-extensions need perfect Write-barriers
•Manipulate Ruby objects in C language (in C-ext)
• C-level WBs are needed

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 49

RGenGC: Problem
Inserting WBs into C-extensions (C-ext)
• Problem: Compatibility
•Example (C) RARRAY_PTR(old0)[0] = new1
•There are Many Many C-exts’ sources like that

•CRuby core code uses C-APIs, but we can rewrite
all of source code (with terrible debugging!!)

•We can’t rewrite all of C-exts which are written
by 3rd party

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 50

RGenGC: Problem
Inserting WBs into C-extensions (C-ext)

“Two options”

[Give up on GenGC]

or

[GenGC with re-writing all of C-
extensions without C-exts compatibility]

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

Current
Choice

51

RGenGC:
Related work on Ruby’s GenGC
•Kiyama, et. al. GenGC for CRuby
•Straightforward implementation for Ruby 1.6
•Need WBs in correct places
•High development cost
•Can’t keep compatibility → Drop all C-exts

•Nari, et.al longlife GC for CRuby
• Introduce GenGC only for Node object
•No compatibility issues because C-exts don’t use

node
•Now CRuby doesn’t use many number of node

objects
•High development cost (to guarantee WBs)

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 52

RGenGC:
Related work on Ruby’s GenGC

•Make interpreter with other language
infrastructures which have GC
• JRuby, IronRuby
•Can’t keep compatibility with current C-exts

•Separate core heap and CRuby C-ext heap
•High development cost

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 53

RGenGC: Challenge

•How to insert Write-barriers?
• In Ruby-core, we can chnage w/ huge effort
•However, we can’t touch existing C-exts ← Problem

•Several approaches
•Separate heaps into the WB world and non-WB

world
• Need to re-write whole of Ruby interpreter

• Need huge development effort

•WB auto-insertion
• Modify C-compiler

• Need huge development effort

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 54

RGenGC:
Challenge to introduce GenGC

•Create GC algorithm permits WB protected
objects AND WB un-protected object in the
same heap

RGenGC: Restricted Generational
Garbage Collection

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 55

RGenGC: Goal
Inserting WBs into C-extensions (C-ext)

“2 → 3 options”

[Give up on GenGC]
or

[GenGC with re-writing all of C-
extensions without C-exts compatibility]

or
[Use RGenGC]

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

New
choice!!

56

RGenGC:
Key idea

•Introduce Shady object
• In this context, “Shady” means questionable,

doubtful, etc
•Something feeling dark
•日陰者, in Japanese

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 57

Google image search: “日陰者”

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 58

RGenGC:
Key Idea
•Separate objects into two types
• Shady Object: WB Unprotected
• Sunny Object: WB Protected

•Decide this type at creation time
•A class don’t care about WB → Shady obj
•A class care about WB → Sunny obj
• Currently, most of classes DON’t care about WB,

so most of objects are created as Shady objects.
RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

Shady: doubtful,
questionable, ...

59

An antonym of
the word “Shady”

Shady
（´･ω･`）

Sunny
＼（＾o＾）／

RGenGC:
Key Idea

•Sunny objects can change
to Shady objects
• “Shade” operation
• In the C program doesn’t

care about RGenGC
•Example

• ptr = RARRAY_PTR(ary)

• In this case, we can’t insert WB for
ptr operation, so VM shade “ary”

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 60

Sunny
obj

Shady
obj

VM

Shade

Create

Shady object can’t
change into sunny object

RGenGC
Key Idea: Rule

•Mark “Shady objects” correctly
•At Marking
1. Don’t promote shady objects to old objects
2. Remember shady objects pointed from old

objects
•At Shade operation for old sunny objects
1. Demote objects
2. Remember shaded shady objects

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 61

RGenGC
[Minor M&S GC w/Shady object]

•Mark reachable objects
from root objects
•Mark shady objects, and

don’t promote to old
gen objects
• If shady objects pointed

from old objects, then
remember shady objects
by RSet.

→ Mark shady objects
every minor GC!!

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

Root objects

new

new

old

new
new

traverse

traverse

traverse traverse

old

Remember
set (RSet)

collect

new/
free

new/
free

traverse

new

traverse

new

traverse

1st MinorGC

mark and
remember

remember

62

RGenGC
[Minor M&S GC w/Shady object]

•Mark reachable objects
from root objects
•Mark shady objects, and

don’t promote to old
gen objects
• If shady objects pointed

from old objects, then
remember shady objects
by RSet.

→ Mark shady objects
every minor GC!!

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

Root objects

old

old

old

new
old

traverse

ignore

ignore
ignore

old

Remember
set (RSet)

collect

new/
free

new/
free

traverse

new

traverse

new

traverse

traverse

2nd MinorGC

63

RGenGC
[Shade operation]

•Old sunny objects → Shade
objects
•Example: RARRAY_PTR(ary)
• (1) Demote object (old → new)
• (2) Register it to Remember Set

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

old

Shadyold

new

Remember
set (RSet)

64

RGenGC
Timing chart

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

Ruby Mark Sweep

Stop the (Ruby)
World

Sweep Sweep Sweep Sweep

2.0.0 GC (M&S w/lazy sweep)

w/RGenGC (Minor GC)

Ruby
Mark

Sweep

Stop the
(Ruby)
World

Sweep Sweep Sweep Sweep

• Shorter mark time (good)
• Same sweep time (not good)
• (little) Longer execution time b/c WB (bad)

65

RGenGC
Number of marking objects

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

2.0.0 GC (M&S w/lazy sweep)

Living object counts Freed object counts

w/RGenGC (Minor GC)

Living object counts Freed object counts

of old
object
(#old)

of new
object (#new)

of freed
but remembered

objects

(a) (b)

(a) # of old objects by WB
(b) # of shady objects pointed by old
(c) # of old but shady objects

(c)

66

RGenGC
Number of marking objects

Marking space Number of unused,
uncollected objs

Sweeping
space

Traditional GenGC #new + (a) (a) #new

RGenGC #new + (a) + (b) + (c) (a) + (b) Full heap

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

w/RGenGC (Minor GC)

Living object counts Freed object counts

of old
object
(#old)

of new
object (#new)

of freed
but remembered

objects

(a) (b)

(c) (a) # of old objects by WB
(b) # of shady objects pointed by old
(c) # of old but shady objects

67

RGenGC
Discussion: Pros. and Cons.

•Pros.
•Allow WB unprotected objects (shady objects)

• 100% compatible w/ existing extensions (and standard classes/methods)

• Inserting WBs step by step, and increase
performance gradually
• We don’t need to insert all WBs into interpreter core at a time

• We can concentrate into popular (frequent) classes/methods.

• We can ignore minor classes/methods.

•Simple algorithm, easy to develop (done!)

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 68

RGenGC
Discussion: Pros. and Cons.

•Cons.
• Increasing “unused, but not corrected objects

until full/major GC
• Remembered objects (caused by well known GenGC algorithm)
• Remembered shady objects (caused by RGenGC algorithm)

•WB insertion (potential) bugs
• RGenGC permit shady objects, but sunny objects need

correct/perfect WBs. But inserting correct/perfect WBs is difficult.
• This issue is out of scope. We have another idea against this

problem (out of scope).

•Can’t reduce Sweeping time
• But many (and easy) well-known techniques to reduce sweeping

time (out of scope).

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 69

Quoted “2.1”

“2.1 Character set
…”

- C Reference manual
By Samuel P. Harbison III, Guy L.Steele Jr.

“2.1 文字集合
一つのCソースファイルは、一つの文字集合に含
まれる文字の並びである。”

-C リファレンスマニュアル

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 70

RGenGC
Implementation
• Introduce two flags into RBasic
• FL_KEEP_WB: WB protected or not protected

• 0 → unprotected → Shady object
• 1 → protected → Sunny object
• Usage: NEWOBJ_OF(ary, struct RArray, klass, T_ARRAY | FL_KEEP_WB);

• FL_OLDGEN: Young gen or Old gen?
• 0 → Young gen
• 1 → Old gen
• Don’t need to touch by user program

•Remember set is represented by bitmaps
• Same as marking bitmap
• heap_slot::rememberset_bits
• Traverse all object area with this bitmap at first

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 71

RGenGC
Implementation: WB operation API

•OBJ_WRITE(a, &a->x, b)
•Declare ‘a’ aggregates ‘b’
•Write: *&a->x = b
•Write barrier
•OBJ_WRITE(a, b) returns “a”

•OBJ_WRITTEN(a, oldv, b)
•Declare ‘a’ aggregates ‘b’ and old value is ‘oldv’
•Non-write operation
•Write barrier

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 72

‘a’

‘&a->x’

oldv

b

RGenGC
Implementation: WB operation API
•T_ARRAY
•RARRAY_PTR(ary) causes shade operation

• Can’t get RGenGC performance improvement
• But works well

•Instead of RARRAY_PTR(ary), use alternatives
•RARRAY_AREF(ary, n) → RARRAY_PTR(ary)[n]
•RARRAY_ASET(ary, n, obj) → RARRAY_PTR(ary)[n] =

obj w/ Write-barrier
•RARRAY_PTR_USE(ary, ptrname, {...block...})

• Only in block, pointers can be accessed by `ptrname’ variable
(VALUE*).

• Programmers need to insert collect WBs (miss causes BUG).

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 73

RGenGC
Incompatibility

•Make RBasic::klass “const”
•Need WBs for a reference from an object to a

klass.
•Only few cases (zero-clear and restore it)
•Provide alternative APIs

• Now, RBASIC_SET_CLASS(obj, klass) and
RBASIC_CLEAR_CLASS(obj) is added. But they should be internal
APIs (removed soon).

• rb_obj_hide() and rb_obj_reveal() is provided.

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 74

RGenGC
Implementation

•RGENGC_CHECK_MODE in gc.c
•1: Enable assertions
•2: Enable “WB checking” mode

•WB checking mode
• (1) do minor GC
• (2) do major/full GC
• (3) compare result with (1) and (2)

• If living objects in (2) but not living in (1) it should be BUG!!

•Not a perfect (implementation limitation), but a
good method to detect bugs

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 75

RGenGC
Implementation

•Macros in ruby/ruby.h
•USE_RGENGC

• You can enable/disable RGenGC with this macro.

•RGENGC_WB_PROTECTED_???
• RGENGC_WB_PROTECTED_ARRAY, RGENGC_WB_PROTECTED_HASH,

RGENGC_WB_PROTECTED_STRING, RGENGC_WB_PROTECTED_OBJECT,
RGENGC_WB_PROTECTED_FLOAT, RGENGC_WB_PROTECTED_COMPLEX,
RGENGC_WB_PROTECTED_RATIONAL, RGENGC_WB_PROTECTED_BIGNUM

• Now, only supports above types (T_???).
• T_CLASS, T_MODULE and T_DATA is needed to support with high priority.

• You can enable/disable RGenGC for each types.

• If you have trouble with RGenGC, try to disable them.

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 76

RGenGC
Performance evaluation

•Ideal micro-benchmark for RGenGC
•Create many old objects at first
•Many new objects (many minor GC, no major GC)

•RDoc
•Same RDoc generation as Ruby’s trunk

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 77

RGenGC
Performance evaluation (micro)

0

100000000

200000000

300000000

400000000

500000000

600000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ex
e

cu
ti

o
n

 t
im

e
 b

y
R

D
TS

C

GC count

mark (RGENGC)

sweep (RGENGC)

mark

sweep

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada

• Shorter mark time (good)
• Same sweep time (not good)

78

Same sweep
time

Good mark
time

RGenGC
Performance evaluation (RDoc)

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 79

0

50

100

150

200

250

300

350

400

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

m
s

Mark Time(ms)

Sweep Time(ms)

RGenGC/Mark Time(ms)

RGenGC/Sweep Time(ms)

Total GC count
is different

Several major/full
GC peaks

Faster minor
GC

RGenGC
Performance evaluation (RDoc)

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 80

0

10000

20000

30000

40000

50000

60000

Normal RGenGC

m
s Total mark

Total sweep

RGenGC
Performance evaluation (RDoc)

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 81

175

180

185

190

195

200

205

210

215

220

225

Normal RGenGC

se
c

Execution time

Impressive!!

Of course, this is “Graph magic”.
If a students submits this graph,
his score is fail.

RGenGC
Performance evaluation (RDoc)

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 82

0

50

100

150

200

250

Normal RGenGC

Execution time

About 15% speedup!

RGenGC: Summary

•RGenGC: Restricted Generational GC
•New GC algorithm allow mixing “Write-barrier

protected objects” and “WB unprotected objects”
•No (mostly) compatibility issue with C-exts

•Inserting WBs gradually
•We can concentrate WB insertion efforts for major

objects and major methods
•Now, Array and String objects are WB protected

• Array and String objects are very popular in Ruby

• Array objects using RARRAY_PTR() change to WB unprotected
objects (called as Shady objects), so existing codes work well

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 83

RGenGC
Future work
•Minor GC / Major GC timing
•Too many major GC → slow down
•Too few major GC → memory consumption issue, etc

•Make more sunny objects (especially T_CLASS)
•Optimize remember set representation
•Inserting WBs w/ application profiling
•Profiling system
•Benchmark programs

•Detection system for WBs insertion miss
•RGENGC_CHECK_MODE (2, in gc.c) is not enough

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 84

RGenGC
Issues: Terminology
•Matz rejected the word “Sunny”

•“Shady” has a meaning of “questionable,
doubtful, …”, but “Sunny” has no meaning of
against “questionable, doubtful, etc”.

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 85

Shady
（´･ω･`）

Sunny
＼（＾o＾）／

Doubtful,
questionable, etc

???

RGenGC
Issues: Terminology

•This is a last presentation to use “Shady” and
“Sunny”
•We will replace codes and documents with:
• “Shady” → “WB unprotected”
• “Sunny” → “WB protected”

•Or
• “Shady” → “Shady” (remain)
• “Sunny” → “Normal” (not shady)

If you have any idea of the words,
please let us know.

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 86

Quoted “2.1”

“2:1 Now when Jesus was born in Bethlehem of
Judaea in the days of Herod the king, behold, there
came wise men from the east to Jerusalem,”

- Gospel of Matthew

“2:1 イエスがヘロデ王の代に、ユダヤのベツレヘム
でお生れになったとき、見よ、東からきた博士たちが
エルサレムに着いて言った、”

-マタイによる福音書

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 87

Ruby 2.1 expected “internal” features

•Sophisticated inline cache invalidation mechanism
•Memory efficient string management & Symbol GC
•Fine-grain memory protection to detect WB

insertion miss
•Signal thread
•More efficient inter-process migration technique
• JIT compilation for small part of Ruby code
• Introduce fastpath C-methods type
• Inlined Proc.call invocation
•AOT Compiler and extending “require” behavior
•Useful debugger

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 88

Sophisticated inline cache
invalidation mechanism

•From Ruby 1.9 (YARV), inline cache technique
is used in several codes
• Inline method caching ← Huge opportunity
•Constant lookup
•…

•Cache invalidation with only one variable
“global_state_version”

•Invalidate inline cache, other non-related
inline caches are also invalidated

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 89

Sophisticated inline cache
invalidation mechanism

•Invalidate all classes’ method cache

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 90

Object

X Y Z

X1 X2 Z1 Z2

Redefine X,
invalidate all of

classes

X1a

Sophisticated inline cache
invalidation mechanism

“This patch adds class hierarchy method
caching to CRuby. This is the algorithm used by
JRuby and Rubinius.”

[ruby-core:55053] [ruby-trunk - Feature #8426][Open]
Implement class hierarchy method caching

by Charlie Somerville

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 91

Sophisticated inline cache
invalidation mechanism

•Invalid only sub-classes under effective class

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 92

Object

X Y Z

X1 X2 Z1 Z2

Redefine X,
invalidate X and
X’s subclasses

X1a

Memory efficient string management

•Each string has their string body (space
acquired by malloc())

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 93

ptr

String

“String body”

Memory efficient string management

•For some strings have same “string body”,
they has own string body each other.

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 94

ptr

String

“String body”

ptr

String

“String body”

ptr

String

“String body”

ptr

String

“String body”

ptr

String

“String body”

ptr

String

“String body”

Memory efficient string management

•It can be shared by strings w/ dirty bit.

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 95

ptr

String

“String body”
(shared by 5 places)

ptr

String

ptr

String

ptr

String

ptr

String

→ Reduce memory consumption!!

† Sharing string body is implemented now
if a string object is duped.
This technique is more aggressive approach.

Memory efficient string management

•This mechanism can work with Symbol
management

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 96

ptr

String

“String body”
(shared by 5 places)

ptr

String

ptr

String

ptr

String

ptr

String

→ GC-able Symbol

“2:1 And the heavens and the earth were finished,
and all the host of them.”

- Genesis

“2:1 こうして天と地と、その万象とが完成した。”

-創世記

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 97

Quoted “2.1”

Agenda

•Ruby 2.1 Schedule
•Ruby 2.1 new “internal” features
• Internal object management hooks

• Object allocation tracing
• GC hooks

• RGenGC: Restricted Generational Garbage
Collection ← Today’s main topic

•Ruby 2.1 expected “internal” features
• Sophisticated inline cache invalidation mechanism
•Memory efficient string management
•Useful debugger

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 98

Summary

•We are implementing new features and
improving Ruby’s quality for Ruby 2.1

•Especially introducing “Generational garbage
collector” which I’m working on will improve
huge performance

•Ruby 2.1 is currently scheduled on Dec 25,
2013

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 99

Thank you
Any questions?

Koichi Sasada
Heroku, Inc.

<ko1@heroku.com>

RubyKaigi 2013 Toward efficient Ruby 2.1 by Koichi Sasada 100

