
Implementation of
Ruby 1.9.3
and later

Koichi Sasada
Department of Creative Informatics,

Graduate School of
Information Science and Technology,

The University of Tokyo

1

Today’s topic

Ruby 1.9.3

Next and next version of MRI

2

We released!

Ruby 1.9.3
…rc1

3

Yugui-san (release manager)
says …

“I will release Ruby 1.9.3 within this

two weeks unless any serious problem is

reported. If you have any trouble with

Ruby 1.9.3, please let us know.”

It’s means…

4

We need human sacrifice

5

http://www.flickr.com/photos/babomike/4741964697/

Ruby 1.9.3
New Features

RTFN
Read the F*****g News

6

Ruby 1.9.3 Features

License

Original and (GPLv2 → 2-clause BSDL)

Syntax, Methods/Libraries

Private constants

DL/YAML → Fiddle/Psyck

Test::Unit → Parallel extension (by
@sora_h, talking at next room)

String#prepend, IO.write, etc

… (Actually, I don’t know about Ruby world)
7

Implementation of

Ruby 1.9.3

Internals
and later

Koichi Sasada
Department of Creative Informatics,

Graduate School of
Information Science and Technology,

The University of Tokyo

8

Ruby 1.9.3
Interpreter internals

Garbage Collection

• Lazy Sweep

• Parameter tuning

Timer thread implementation

• Reducing power consumption

GVL implementation for multi-core

• Solve an problem about non-thread switching on
multi-core

9

Garbage Collection

10 http://www.flickr.com/photos/ninithedreamer/4649075746/

Introducing
Lazy Sweep GC

 Before 1.9.3: Stop the world mark and sweep

 After 1.9.3: Stop the world mark, and incremental sweep

11

Ruby Mark Sweep Ruby execution

Stop the (Ruby) World

Ruby Mark Sweep

Ruby execution with

incremental sweep

(shorter stopping time)

Stop the (Ruby)

World

Sweep Sweep Sweep Sweep

Shorter

stop time

Garbage collection
Parameter tuning

12

Read a source code for details :p

Quoted from nari3’s slide

Ruby 1.9.3
All About Timer Thread

(core, details)

Koichi Sasada
Department of Creative Informatics,

Graduate School of

Information Science and Technology,

The University of Tokyo

13

Recycle Presentation

@RubyKaigi2011, again

Power consumption

14 http://www.flickr.com/photos/livingos/2494500294/

Background
Timer Thread?

 Timer thread is an internal mechanism
on Ruby 1.9

 For thread scheduling

 For signal delivery

15

Timer

thread

Ruby

thread 1

Wake up Wake up Wake up

Ruby

thread 2

Pass the GVL Pass the GVL Pass the GVL

tell the timing tell the timing tell the timing

Problem
Power Consumption?

 Timer thread awake every 10ms

 To notify a running thread to release GVL

 Wake-up anytime even if it is not necessary (no

scheduling is needed) → CPU can’t sleep enough

 A few people claimed that the timer thread consumes
power

16

Timer

thread

Ruby

thread

(sleeping)

Wake up Wake up Wake up

10ms 10ms

Solution
Rewrite Timer Thread Code

 Make timer thread more smart

Timer thread sleeps infinitely if only one
thread is needed

Using pipe trick

17

Timer

thread

Ruby

thread 1

Wake up Wake up

10ms

Ruby

thread 2

Pass the GVL

tell the timing

Create new thread

Start

periodical

wake up

Evaluation (?)
Power consumption

18

50

51

52

53

54

55

56

57

58

59

60

W
 1.9.2

proposed

0 1 2 4 8 16 32 64 128

Evaluation

0

10

20

30

40

50

60

70

80

90

100

1.9.2

proposed

0 1 2 4 8 16 32 64 128

Reduce 0.3W

on 1 Ruby process

19

Caution!
Incompatibility

Pipe trick needs additional file
descriptors

You should not close them

Passenger does it!!

Skip to close such file descriptors w/
new C API “rb_reserved_fd_p()”

20

Thread Scheduler
on the multi-core

21 http://www.flickr.com/photos/marksze/4231114748/

22

Ruby 1.9.3
GVLおよびロックの改善

GVL and Lock improvement

 Fujitsu

Motohiro Kosaki

Recycle Presentation

@RubyKaigi2011 by Kosaki-san

He is a

 Ruby and

Linux kernel

committer

Background again
Only one thread can run w/GVL

 Timer thread is an internal mechanism
on Ruby 1.9

 For thread scheduling

 For signal delivery

23

Timer

thread

Ruby

thread 1

Wake up Wake up Wake up

Ruby

thread 2

Pass the GVL Pass the GVL Pass the GVL

tell the timing tell the timing tell the timing

Doesn’t work some program
on Multi-core environment

24

example

f = false

Thread.new {

 ;

 f = true

}

Thread.pass until f

Why?

25

Good old OS scheduler

26

core

Thread Thread Thread

Only one Queue Thread

core

Thread

core

Thread

Quoted from Kosaki-san’s slide

New fast OS scheduler

27

core
Thread

Thread

core

Thread

core

Thread

Thread

Thread

Same number of CPU

cores

Thread

Quoted from Kosaki-san’s slide

Situation (1)

28

core Thread

Thread 1

Ruby

Thread１

core

Thread

Ruby

Thread２

Yield!
Return into Queue

（ ＾ω＾）
I can expect resume!

Quoted from Kosaki-san’s slide

Situation (2)

29

core Thread

Thread 1

Ruby

Thread１

core

Thread

Ruby

Thread２

Head of

Queue

Resume

again!

(´・ω・｀)
I can’t resume again…

Quoted from Kosaki-san’s slide

Solution

 We change GVL passing strategy

Passing GVL definitely

Ask me later if you want to know

30

gvl_acquire

mutex_lock(&lock->lock)

cond_wait(&lock->wait)

lock->acquired = 1;

// notice

cond_signal(&lock->switch_cond)

mutex_unlock(&lock->lock)

mutex_lock(&lock->lock)

lock->acquired = 0;

cond_signal(&lock->wait_cond)

// sleeping until

cond_wait(&lock->switch_cond)

mutex_unlock(&lock->lock)

gvl_release

Quoted from Kosaki-san’s slide

Thread related performance

31 Quoted from Kosaki-san’s slide

Future

32

http://www.flickr.com/photos/viernullvier/5698630227/

Implementation of
Ruby 1.9.3

and later
Koichi Sasada

Department of Creative Informatics,
Graduate School of

Information Science and Technology,
The University of Tokyo

33

Ruby 1.9.4? Ruby 2.0?

Now discussing which version should be
released

• Matz says “Next version is 2.0 including several
new syntax”
• keyword argument support for method definitions
• Module#mix
• Module#prepend
• and others (refinement, classbox, or method
shelter?)

• Another says “Should be 1.9.4”

34

Ruby 2.0?
What feature do you want?

Teach me here,

raise your hand!
Anything is okay.

35

OKay.

There are many
requirements.

36

Ask Matz

Yesterday, I asked Matz what should we do.
He doesn’t want to release 1.9.4 anymore.
He want to say there are no progress in 1.9

series any more, but only in 2.0 series.

If spec is concluded, he shrink 2.0 spec and
release force.

Please ask Matz tomorrow,

if you have opinion about it.
37

My concerns on next version

Performance
This is why I’m here

Profiler/debugger interface
Please teach me what information you
want to know!

Compiling supports

 I’ll introduce several possibility and
activities about “Ruby in Future”

38

Profiling / Debugging
support

We add more support for
profiling/debuggin

Please teach me what
information you want to know!

39

ObjectSpace.reference_from(obj)

2 days ago, I posted a patch of
ObjectSpace.reference_from(obj)

• I’m sad there are few feedback…

40

obj
x

y

ObjectSpace.reference_from(obj)

#=>

{98752943875 => x,

 48334232r23 => y}

keys are object id

value are object themselves

Research of my student:
Performance profiler

ll-prof

Real-time profiler for LL languages

•Ruby and Python (he is Pythonian)

Viewer in JavaScript

•You can see results in you browser

41

Ruby Profiler Collector
Browser

Browser

TCP/IP

HTTP

Demo
(movie made by student)

42

Performance

Speed

VM w/ runtime performance

GC performance

Memory consumption

Power consumption

43

Performance
VM w/ runtime speed

Performance improvements VM

Easy escape analysis to prevent
generating temporary objects

44

Performance
VM w/ runtime speed

Semi-automatic Type inference
and translate Ruby code into C
(C extension)

45

Student’s research: CastOff
A performance improvement tool for ruby1.9.3

Programmer

require ‘cast_off’

CastOff.compile(

 Klass,

 :Method,

 binding,

 TypeInfo)
…

(1) Use from

ruby script
•Compile

Klass#Method

•Load compiled binary

•Run faster

Programmer

(2) Use from

command line •Run and Profile

“program”

•Compile methods

in “program”

•Run faster

$ CastOff

“program”

Quoted from Shiba-san’s slide

Compilation flow

47

C build

tools

Code

Manage

r

Code

Generato

r

.conf .conf .conf

Configuratio

n

C

Extentio

n

C

Source
Makefile

Configuration

Ruby program

Compilation

Target

Tuning code

class Sample

CastOff.compile(

 self, :sample,

 binding,

 :f => Foo)

end

Quoted from Shiba-san’s slide

Performance improvements

fa
s
te

r

Execution time ratio（CRuby 1.9.3 / CastOff）

0
10
20
30
40
50
60
70
80
90

Guard NoGuard

0

1

2

3

4

5

6

7

bm_sieve.rb bm_lists.rb
0

0.2

0.4

0.6

0.8

1

1.2

bm_rdoc

Quoted from Shiba-san’s slide

Performance
Garbage collection

MRI/CRuby’s GC is slow
Stop the world and mark all

Generational?
Issue: C extension compatibility

 Ideas
Parallel GC → Yesterday’s nari3’s talk
Escape analysis and reduce GC
managed objects

Smart data-structure to reduce GC
managed objects

49

Performance
Memory consumption

One Rails app consume 100MB

→ Encourage sharing resources

 such as Strings, Arrays, and so on

REE/Kiji CoW friendly, generational

50

Performance
Power consumption

Time thread modification at
1.9.3 → small one

More aggressive way?

51

Performance
Parallel computing

52
http://www.flickr.com/photos/juror8/394285511/

Parallel Execution

 Run threads in parallel (JRuby, MacRuby, …)

Good: Well known approach

Bad: Difficult to make safe/correct
multi-threaded programs

• Many tragedy (in Java, etc.)

Bad: Difficult to make efficient
implementation with fine-grain lock

 Parallel processes (dRuby, …)

Good: No need to implement

Bad: Marshal overheads

53

Support friendly
Coarse-grained parallel computing

Encourage Multi-process

Traditional well-known approach

Toward advanced dRuby

Multi-VM

VMs in one process

Light-weight communication

54

Student’s reseach
Tunnel: Inter-process

communication w/shared memory

Object transfer w/ shared
memory

55
Quoted from Nkagawa-san’s slide

Student reserch (cont.)
Space: Inter-process

Space w/shared memory

56

Shared space between ruby
processes

Similar to Linda/Rinda

Quoted from Nkagawa-san’s slide

Evaluation of Tunnel

57 Quoted from Nkagawa-san’s slide

MVM

A.k.a. vaperware

We have progress on it, this year.
58

Parallel Execution
Multiple-VM (MVM) on Ruby

 Multiple VMs in one process

 VMs are completely isolated (Each VM has an
independent object space (heap))

 VMs run in parallel

• Each VM has own GVL (w/o fine grained lock)

 Ruby process

Ruby VM Ruby VM

Channel

- Passing

References

- Memory copy

Threa

d

Threa

d

Serial execution w/GVL

GV

L

Thread
Thread

GV

L

59

Our Approach
Multiple-VM (MVM) on Ruby

 Channel: Inter-VM Communication
mechanism

 The only way to communicate with other VMs

 Simply passing references or copying memory in the
same address space

 Ruby process

Ruby VM Ruby VM

Channel

- Passing

References

- Memory copy

Threa

d

Threa

d

Serial execution w/GVL

GV

L

Thread
Thread

GV

L

60

Share the same address space

Evaluation
HTML rendering app

Master dispatch string to worker
and worker returns rendered
HTML.

61

61

Ruby process

Master VM Worker VM String

Rendered

HTML

Evaluation
HTML rendering app

62

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

S
p

e
e

d
u

p
 r

a
ti

o

of VMs/Processes

Processes+pipe

MVM+channel

 Benchmark assuming web application

 Several front-end VMs and one DB VM

 YUBIN-Number (zip-code) DB on memory

 Using dRuby (w/MVM) framework

63

Evaluation
DB app

63

Ruby process

DB VM Front-end VM
Query

String

(YUBIN#)

Result

String

(Address)

On memory

YUBIN# DB

Evaluation
DB app

64

Query/sec

Future work

 Extend this communication channel between inter-process (w/
shared memory), inter-node

 Migratable Ruby activity (threads, blocks (closures) and so on)

65

Node

Ruby Process

VM VM Thread

Thread

Thread

Thread

Ruby Process

VM VM Thread

Thread

Thread

Thread

Node

Ruby Process

VM VM Thread

Thread

Thread

Thread

(Abstract)

Shared Object Space

Channel
Channel

Channel

shared

object

shared

object

Summary

Ruby 1.9.3 will be released soon!

Be Sacrifice!

NEWS file and blog posts are good to know

changes

This talk introduces background on Ruby 1.9.3

We are continuing the hacking to the future

Stay tuned to the next announcement

66

おしまい
Thank you for your attention

67

Implementation of

Ruby 1.9.3

and later
ささだこういち

ko1@atdot.net, ko1@rvm.jp

