
Ruby's Concurrency
Management:

Now and Future

Koichi Sasada
ko1@cookpad.com

Today’s talk

•Supported features
•Process
•Thread
•Fiber

•Features under consideration
•Guild
•Auto-Fiber

Today’s talk
Process Guild Thread Auto-Fiber Fiber

Available Yes No Yes No Yes

Switch on time Yes Yes Yes No No

Switch on I/O Auto Auto Auto Auto No

Next target Auto Auto Auto Auto Specify

Parallel run Yes Yes No (on MRI) No No

Shared data N/A (mostly) N/A Everything Everything Everything

Comm. Hard Maybe Easy Easy Easy Easy

Programming
difficulty

Hard Easy Difficult Easy Easy

Debugging
difficulty

Easy? Maybe Easy Hard Maybe hard Easy

Koichi Sasada
http://atdot.net/~ko1/

•A programmer
•2006-2012 Faculty
•2012-2017 Heroku, Inc.
•2017- Cookpad Inc.

•Job: MRI development
•MRI: Matz Ruby Interpreter
•Core parts
• VM, Threads, GC, etc

Ruby interpreter

Ruby (Rails) app

RubyGems/Bundler

So many gems
such as Rails, pry, thin, … and so on.

Normal Ruby developer’s view
i gigantum umeris insidentes
Standing on the shoulders of giants

Interpret on RubyVM

Normal MRI developer’s view

6

Ruby
script

Parse

Compile
(codegen)

Ruby
Bytecode

Object management
Garbage collectorThreading

Embedded
classes and methods

Bundled
Libraries

Evaluator

Gem
Libraries

AST
Abstract Syntax Tree

Ruby interpreter

Ruby (Rails) app

RubyGems/Bundler

So many gems
such as Rails, pry, thin, … and so on.

Koichi’s job

Koichi

Ruby3: Ruby3 has 3 goals

•Static type checking

•Just-in-Time (JIT) compilation

•Parallel execution w/ highly
abstract concurrent model

Ruby3: Ruby3 has 3 goals

•For productivity
•Static checking

•For performance
• Just-in-Time (JIT) compilation
•Parallel execution w/ highly abstract
concurrent model

Concurrency

“In computer science, concurrency is the decomposability
property of a program, algorithm, or problem into order-
independent or partially-ordered components or units.[1] This
means that even if the concurrent units of the program,
algorithm, or problem are executed out-of-order or in partial
order, the final outcome will remain the same. This allows for
parallel execution of the concurrent units, which can
significantly improve overall speed of the execution in multi-
processor and multi-core systems.”

https://en.wikipedia.org/wiki/Concurrency_(computer_science)

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Concurrency_(computer_science)#cite_note-1
https://en.wikipedia.org/wiki/Concurrency_(computer_science)

Concurrent and Parallel execution

Concurrent
execution

Logical concept

Parallel
(and concurrent)

execution
Physical concept

Ruby (MRI) support only concurrency

Task A

Task B

Task A

Task B

Concurrency
Why needed?

•Easy to write some kind of programs
•Download files simultaneously
•Process web requests simultaneously
•Agent simulation (assume computer games)
•Each agent has its own logics
•Run agents simultaneously

Concurrency
Example: Downloader

Download A

Download B

Download C

wait for receving

wait for receving

wait for receving

post process

post process

post process

We can write this kind of program w/o concurrency support,
but not simple, not easy

Downloader example
With concurrency support (Thread)
ts = URLs.map do |url|

Thread.new(url) do |u|

data = download(u)

File.write(u.to_fname, data)

end

end.each{|th| th.join} # wait

Downloader example
Without concurrency support

Serial execution

URLs.each do |u|

data = download(u)

File.write(u.to_fname, data)

end

Concurrency
Not concurrent case

Download A

Download B

Download C

wait for receving

wait for receving

post process

post process

… and download C after that

Downloader example
Without concurrency support
Use select. Not so SIMPLE!!

fds = URLs.map do |u|

download_fd(u)

end

while ready_fds = select(fds)

ready_fds.each{|fd|

File.write(…, read(fd))}

end

Existing concurrency supports on
Ruby (MRI)

Supported features by Ruby/MRI

•Process

•Thread

•Fiber

Process
Traditional concurrency support

Process

•Use OS multi-process
•Use fork on Unix-like systems

•Shared-nothing
• Communicate with IPC (pipe, etc) such as IO.pipe

•Programming
•Difficult to manage processes and IPC

•Debugging
• Easy because a few synchronization bugs

Inter-process communication

Ruby process Ruby process

pipe

file

obj

string

Serialize

obj

string

Deserialize

Inter-process communication
Example code
Traditional multi-process example

r, w = IO.pipe

fork do

result_str = work_something.to_s

w.write result_str

w.close

end

puts r.read # wait for a result

Sophisticated libraries/frameworks for
process programming

•dRuby: Distributed object for Ruby

•parallel gem: Parallel programming with
processes

•unicorn: Process based web application
server (master – worker model w/ processes)

Thread
Ruby’s native concurrency support

Thread

•Use Ruby managed threads
• Thread.new do … end

•Shared-everything
• Communication is very easy

•Programming
• Easy to make, easy to communicate (at a glance)
•Difficult to make completely safe program

•Debugging
•Hard because of synchronization

MRI: Thread with Giant Lock (GIL)

•Only a thread keeping the GIL can run (can’t
run in parallel)

Thread 1

Thread 2

Thread 1

CPU 1

CPU 2
IDLE

OS Thread 1

OS Thread 2

Lock
Lock

Inter-thread communication
Easy to share objects

Ruby process

objThread Thread

We can share objects directly
between threads very easily

Inter-thread communication

v = Object.new

$g = Object.new

Thread.new do

p [v, $g]

end

p [v, $g]

Thread programming
Synchronization is required

•Reading/writing data simultaneously w/o
synchronization will cause serious problem
•Race condition
•Data race

Mutate shared objects
Lucky case

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘ko1’

@gender = ‘male’

(1) Thread A tries to change the Speaker
to “Yuki” (female)

Note: Yuki is my wife.

Mutate shared objects
Lucky case

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘Yuki’

@gender = ‘male’

(2) A changes the name to “Yuki”

write

Mutate shared objects
Lucky case

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘Yuki’

@gender = ‘female’

(3) A changes the gender to “female”

write

Mutate shared objects
Lucky case

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘Yuki’

@gender = ‘female’

(4) Complete.
A and B can read correct speaker.

read read

Mutate shared objects
Problematic case

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘ko1’

@gender = ‘male’

(1) Thread A tries to change the Speaker
to “Yuki” (female)

Mutate shared objects
Problematic case

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘Yuki’

@gender = ‘male’

(2) A changes the name to “Yuki”

write

Mutate shared objects
Problematic case

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘Yuki’

@gender = ‘male’

(3) Before the changing,
B read incorrect data!!

Note: Yuki should be female.

read

Inter-thread communication
Synchronization

•Require synchronization for shared data
•Mutex, Queue and so on
•Usually Queue is enough

•To prohibit simultaneous mutation
•We need to keep consistency for each objects

Mutate shared objects
With lock

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘ko1’

@gender = ‘male’

(1) Thread A tries to change the Speaker
to “Yuki” (female). Lock an obj.

Locked by A

Mutate shared objects
With lock

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘Yuki’

@gender = ‘male’

(2) A changes the name to “Yuki”

Locked by A

Mutate shared objects
With lock

Ruby process

Thread

A
Thread

B
SpeakerObject

@name = ‘Yuki’

@gender = ‘male’

(3) Before complete the changing,
B tries to read, but prohibited by a lock

Locked by A

read

Thread programming
Easy to share data: Good and Bad
•Good: Easy to communicate with threads
•Bad: Too easy. Difficult to manage all of
them
•Mutation for shared data requires correct
synchronization
•Sometimes objects are shared implicitly
•Otherwise, it causes serious problems

“Why Threads Are A Bad Idea
(for most purposes)”

• Quoted from John Ousterhout, 1995 (about 20 years ago ☺)

Compare Process with Thread

Process Thread

Available Yes Yes

Switch on time Yes Yes

Switch on I/O Auto Auto

Next target Auto Auto

Parallel run Yes No (on MRI)

Shared data N/A Everything

Communication Hard (high-overhead) Easy (lightweight)

Programming difficulty Hard Difficult

Debugging difficulty Easy? Hard

Fiber
User-defined context switching

Fiber example
Infinite generator

fib = Fiber.new do

Fiber.yield a = b = 1

loop{ a, b = b, a+b

Fiber.yield a }

end

10.times{ p fib.resume }

Fiber example
Infinite generator

fib = Fiber.new do

Fiber.yield a = b = 1

loop{ a, b = b, a+b

Fiber.yield a }

end

10.times{ p fib.resume }

1. Fiber creation

2. Resume Fiber

3. Return to the
parent fiber

4. Resume fiber
(again)

5. Return to the
parent fiber

6. Resume fiber
(again2)

Fiber example
Infinite generator

fib = Fiber.new do

Fiber.yield a = b = 1

loop{ a, b = b, a+b

Fiber.yield a }

end

10.times{ p fib.resume }

1. Fiber creation

2. Resume Fiber

3. Return to the
parent fiber

4. Resume fiber
(again)

5. Return to the
parent fiber

6. Resume fiber
(again2)

Not a Proc?

a = 0; b = 1

fib = Proc.new{

a, b = b, a+b

a

}

p fib.call #=> 1

p fib.call #=> 1

p fib.call #=> 2

p fib.call #=> 3

p fib.call #=> 5

Proc can’t restart from
the middle of block

Proc (method) v.s. Fiber
Proc (method) Fiber

Start OK: call OK: Fiber#resume

Parameters OK: block (method) parameters OK: block parameters

Return OK: exit Proc/method OK: exit Proc/method

Suspend NG: N/A OK: Fiber.yield

Continue NG: N/A OK: Fiber#resume

Fiber example
Inner iterator to external iterator
f1 = Fiber.new do

2.times{|i| Fiber.yield i}

end

p f1.resume #=> 0

p f1.resume #=> 1

p f1.resume #=> 2 # return value of #times

p f1.resume #=> dead fiber called

(FiberError)

Fiber example
Inner iterator to external iterator
etc_passwd_ex_iter = Fiber.new do

open('/etc/passwd').each_line{|line|

Fiber.yield line

}

end

p etc_passwd_ex_iter.resume #=> 1st line

p etc_passwd_ex_iter.resume #=> 2nd line

…

Fiber example
Inner iterator to external iterator
make Enumerator

iter = open('/etc/passwd').each_line

Enumerator#next use Fiber implicitly

p iter.next #=> 1st line

p iter.next #=> 2nd line

…

Fiber example
Agent simulation
characters << Fiber.new{

loop{cat.move_up; Fiber.yield}}

characters << Fiber.new{

loop{dog.move_left; Fiber.yield}}

…

loop{cs.each{|e| e.resume}; redraw}

Fiber example
Agent simulation
characters << Fiber.new{

you can specify complex rule for chars

loop{

cow.move_up; Fiber.yield

cow.move_right; Fiber.yield

cow.move_down; Fiber.yield

cow.move_left; Fiber.yield

}

}

Fiber example
Non-blocking IO scheduler

Wait multiple IO ops with
traditional “select” or

modern “poll”, “epoll” interface

Fiber
Programming difficulty
•Good
•Synchronization for shared data is not required

because of no unexpected switching
• Lightweight than Processes and Threads

•Bad
•We need to switch explicitly. For example,

“Blocking operations” (I/O blocking, etc) stop all
fibers

Comparison of existing supports

Process Thread Fiber

Available Yes Yes Yes

Switch on time Yes Yes No

Switch on I/O Auto Auto No

Next target Auto Auto Specify

Parallel run Yes No (on MRI) No

Shared data N/A Everything Everything

Comm. Hard Easy Easy

Programming difficulty Hard Difficult Easy

Debugging difficulty Easy? Hard Easy

Fiber: Brief history

•2007/05/23 cont.c (for callcc)

•2007/05/25 Fiber impl. [ruby-dev:30827]

•2007/05/28 Fiber introduced into cont.c

•2007/08/25 Fix Fiber spec

•2017 is 10th anniversary I introduced ☺

Proposed concurrency
features
Guild
Auto-Fiber

Guild
Proposed concurrency support for Ruby 3

Key idea

Problem of multi-thread programming:

Easy to share mutable objects

Idea:

Prohibit sharing mutable objects

Our goal for Ruby 3

•We need to keep compatibility with Ruby 2.
•We can make parallel program.
•We shouldn’t consider locks any more.
•We can share objects with copy, but copy
operation should be fast.
•We should share immutable objects if we can.
•We can provide special objects to share
mutable objects like Clojure if we really need
speed.

Guild: New concurrency abstraction

•Guild has at least one thread (and a thread
has at least one fiber)

Guild

Thread

Fiber

Guild

Thread

Fiber

Guild

Thread

Fiber

Fiber

Thread

Fiber

Threads in different guilds can run in
Parallel
•Threads in different guilds can run in parallel
•Threads in a same guild can not run in parallel
because of GVL (or GGL: Giant Guild Lock)

G1:T1

G1:T2

G2:T3

Acquire GGL

Acquire GGL

Important rule:
Mutable Objects have a membership

•All of mutable objects should belong to only
one Guild exclusively

•Guild can not touch objects belong to other
guildsGuild 1 Guild 2

obj
obj

obj

obj

obj
Can’t access
(read/write)

NG!!

Object membership

Only one guild can access mutable object

→ We don’t need to consider locks
(if Guild has only one thread)

Inter-guild communication

•“Guild::Channel” to communicate each guilds

•Two communication methods
1. Copy
2. Move (transfer_membership)

Copy using Channel

Guild1 Guild2

o2
o3

o1
channel

o2
o3

o1

COPY

channel.transfer(o1) o1 = channel.receive

O2:Data

O3:Data

O2:Data

O3:Data

Move using Channel

Guild1 Guild2

o2
o3

o1
channel

MOVE

channel.transfer_membership(o1) o1 = channel.receive

O2:Data

O3:Data

Move using Channel

Guild1 Guild2

channel

o2
o3

o1

MOVE

channel.transfer_membership(o1) o1 = channel.receive

O2:Data

O3:Data

-
-

-

From Guild1 perspective,
transferred objects are invalidated

Sharing immutable objects
We can share reference to immutable objects

Guild1 Guild2

o2
o3

o1

channel

channel.transfer(o1) o1 = channel.receive

O2:Data O3:Data

Ref to
o1

If o1 is immutable, any Guild can read o1

read

Ref to
o1

read

Use-case 1: master – worker type
def fib(n) ... end
g_fib = Guild.new(script: %q{

ch = Guild.default_channel
while n, return_ch = ch.receive

return_ch.transfer fib(n)
end

})

ch = Guild::Channel.new
g_fib.transfer([3, ch])
p ch.receive

Main
Guild

Fibonacci
Guild

ch

return_ch

n, return_ch

Answer of fib(n)

NOTE: Making other Fibonacci guilds,
you can compute fib(n) in parallel

Use-case 2: pipeline
result_ch = Guild::Channel.new
g_pipe3 = Guild.new(script: %q{
while obj = Guild.default_channel.receive
obj = modify_obj3(obj)
Guild.argv[0].transfer_membership(obj)

end
}, argv: [result_ch])
g_pipe2 = Guild.new(script: %q{
while obj = Guild.default_channel.receive
obj = modify_obj2(obj)
Guild.argv[0].transfer_membership(obj)

end
}, argv: [g_pipe3])
g_pipe1 = Guild.new(script: %q{
while obj = Guild.default_channel.receive
obj = modify_obj1(obj)
Guild.argv[0].transfer_membership(obj)

end
}, argv: [g_pipe2])

obj = SomeClass.new

g_pipe1.transfer_membership(obj)
obj = result_ch.receive

Main
Guild

Pipe 1
Guild

obj

Obj’
Move
and modify

Pipe 2
Guild

Obj’’

Move
and modify

Pipe 3
Guild

Obj’’’

Obj’’’

Move
and modify

Move

Compare with Process, Guild, Thread
Process Guild Thread

Available Yes No Yes

Switch on time Yes Yes Yes

Switch on I/O Auto Auto Auto

Next target Auto Auto Auto

Parallel run Yes Yes No (on MRI)

Shared data N/A (mostly) N/A Everything

Comm. Hard Maybe Easy Easy

Programming difficulty Hard Easy Difficult

Debugging difficulty Easy? Maybe Easy Hard

Auto Fiber
Another proposed concurrency support for Ruby 3

Problem of Fiber
Requires explicit switching

•“Fiber” enables writing scheduler by
programmer

→ Programmers need to write own scheduler
•We need to manage blocking operations like
I/O blocking

Auto Fiber proposal

https://bugs.ruby-lang.org/issues/13618

https://bugs.ruby-lang.org/issues/13618

Auto Fiber proposal
Automatic schedule on I/O blocking

• Support Fiber scheduler
natively
• Don’t need to return

scheduler

• Switch Fibers on all blocking
I/O (and other ops)
• No need to change existing

programs

Advantage and Disadvantage

•Advantage
•Don’t need to modify existing programs
• Lightweight as a Fiber
•Safer than Threads (no preemption)

•Disadvantage
• Introduce “non-deterministic” dangers same as

Thread programs
• Non atomic operations can intercept accidentally.

Change the name…?

Compare w/ Thread and (auto-)Fiber
Thread Auto-Fiber Fiber

Available Yes No Yes

Switch on time Yes No No

Switch on I/O Auto Auto No

Next target Auto Auto Specify

Parallel run No (on MRI) No No

Shared data Everything Everything Everything

Comm. Easy Easy Easy

Programming difficulty Difficult Easy Easy

Debugging difficulty Hard Maybe hard Easy

Today’s talk

•Supported features
•Process
•Thread
•Fiber

•Features under consideration
•Guild
•Auto-Fiber

Today’s talk
Process Guild Thread Auto-Fiber Fiber

Available Yes No Yes No Yes

Switch on time Yes Yes Yes No No

Switch on I/O Auto Auto Auto Auto No

Next target Auto Auto Auto Auto Specify

Parallel run Yes Yes No (on MRI) No No

Shared data N/A (mostly) N/A Everything Everything Everything

Comm. Hard Maybe Easy Easy Easy Easy

Programming
difficulty

Hard Easy Difficult Easy Easy

Debugging
difficulty

Easy? Maybe Easy Hard Maybe hard Easy

References

•Fiber: RubyKaigi 2017 http://rubykaigi.org/2017/presentations/ko1.html

•Guild: RubyConf 2016 https://www.youtube.com/watch?v=mjzmUUQWqco

•Auto-fiber: Feature #13618 https://bugs.ruby-lang.org/issues/13618

http://rubykaigi.org/2017/presentations/ko1.html
https://www.youtube.com/watch?v=mjzmUUQWqco
https://bugs.ruby-lang.org/issues/13618

Thank you for your attention

Koichi Sasada
<ko1@cookpad.com>

