
Context threading
on the RubyVM

Koichi Sasada

Cookpad Inc.

Nagoya Ruby Kaigi 04
Lightning talk

Koichi Sasada
http://atdot.net/~ko1/

• A programmer
• 2006-2012 Faculty

• 2012-2017 Heroku, Inc.

• 2017- Cookpad Inc.

• Job: MRI development
• Core parts

• VM, Threads, GC, etc

Notice

• This talk is based on the knowledge of computer science,
especially interpreter development, CPU architecture and C
language. Only one Ruby code here.

• This talk is about the virtual machine development.

Summary

• Introducing “Context threading” to improve VM performance
with extension by “tailcall” technique.

• Now we can not observe performance improvements (slightly
slows down), but we need to investigate more.

Background
VM instruction dispatch technique
• Token Threading

while (1) {

insn = *pc; // fetch

switch (insn) { // dispatch

case Insn_A: do_a(); break; // execution

case Insn_B: do_b(); break;

case Insn_C: do_a(); break;

…

Background
VM instruction dispatch technique
• Direct Threading w/ GCC extension (label as value)

Insn_A:

do_a(); // execution

goto *pc; // fetch and dispatch

Insn_B:

do_a(); // execution

goto *pc; // fetch and dispatch

YARV Maniacs 【第 3 回】 命令ディスパッチの高速化
https://magazine.rubyist.net/articles/0008/0008-YarvManiacs.html

https://magazine.rubyist.net/articles/0008/0008-YarvManiacs.html

Background
Issues
• Indirect branch can hurt “branch prediction”

• Missing branch prediction may have a performance impact.

Insn_A:

do_a(); // execution

goto *pc; // fetch and dispatch

// Branch target is decided by a pointer

// difficult to predict branch prediction

Context threading

• Marc Berndl, et.al.: Context Threading: A Flexible and
Efficient Dispatch Technique for Virtual Machine Interpreters
(2005)

• Remove most of indirect branch to improve branch prediction
performance

Context threading

• Basic idea: Use call instruction (= subroutine threading)
• Bytecode: [A, B, C, C, A]
→ Generate native “call” sequence
[call A, call B, call C, call C, call A] with machine code.
NOTE: there are more techniques on CT, but eliminate them here.

• Advantage:
• Similar to JIT idea. But JIT needs machine code knowledge.
• CT only needs limited knowledge (call instruction).
• “call A” instruction is not indirect branch because the destination is

determined. We can increase instructions number more.
• The call/return pair has been optimized by CPU (call stack cache).

Context threading
Problem
• How to eliminate parameter setup code?

• The sequence should be [call A, call B, …]

• Instructions should communicate each other with parameters

• How to setup function parameters (rdi, rsi, … on x86_64)?

• Original CT (subroutine threading) only support a labels in a
function (calling labels directly)

→ Maybe we don’t need to setup function parameters.

• Disadvantage:
• We can’t add new instructions outside of the function.

• The setup time of the function can be grow.

• “perf” only shows the function’s time.

call A
call B
call C
call C
call A

A(*ec, *cfp) {
// A body, dirty parameter regs
tail(ec, cfp); // setup regs and jump

}

tail(*ec, *cfp) {
// empty → A function only has “ret”

}

NOTE:
Most of case, tailcall
will be “jump” CPU insn

call

ret

Generated
native code

NOTE:
No indirect branch

Measurement

i=0

while i< 100_000_000 # 100M iterations

i = i + 1

end

Impl. is not

completed.

0000 putobject_INT2FIX_0_ (1)[Li]

0001 setlocal_WC_0 i@0

0003 jump 17 (2)[Li]

0005 putnil

0006 pop

0007 jump 17

0009 getlocal_WC_0 i@0 (3)[Li]

0011 putobject_INT2FIX_1_

0012 opt_plus <callinfo!mid:+, argc:1, ARGS_SIMPLE>, <callcache>

0015 setlocal_WC_0 i@0

0017 getlocal_WC_0 i@0 (2)

0019 putobject 100

0021 opt_lt <callinfo!mid:<, argc:1, ARGS_SIMPLE>, <callcache>

0024 branchif 9

0026 putnil

0027 nop

0028 leave (3)

Result

Execution time (sec)

Direct threading (Current) 1.26

Context threading (Proposal) 1.31

Congratulation! Your Ruby is fast!!
• [Small benchmark] → NO prediction misses on recent CPUs.
• So many prologue/epilogue code than my expect.
• “call/return” pair is expensive than my expect.

Remaining issues

• Memory management
• We need to manipulation page protection (allowing execution) so

that we can’t use “malloc/free” library functions.
• On x86_64 CPU, “call” instruction should be 32 bit relative address

so that code are should be near to instruction functions (A, B, …).

• Verbose VM virtual registers manipulation
• Stack caching can have an affinity because we can pass TOS values

with function parameters.

• Not only “call”, but other asm is needed to improve more.
• Maintenance issue.
• Portability issue.

Summary

• Introducing “Context threading” to improve VM performance
with extension by “tailcall” technique.

• Now we can not observe performance improvements (slightly
slows down), but we need to investigate more.

Context threading
on the RubyVM

Koichi Sasada
Cookpad Inc.

<ko1@cookpad.com>

Thank you for your attention

