
Ractor
Demonstration

Koichi Sasada

(from Japan)

Cookpad Inc.

RUBYCONF 2020

Ask Koichi

• I will check tweets with “#ractor” hashtag on twitter so if you have
a question, please tell me.

• You can access this presentation slies on:
https://www.atdot.net/~ko1/activities/

https://www.atdot.net/~ko1/activities/

Background

Parallel
programming

• Parallel execution on Multi-core CPUs is important

• Multi-process programming is not easy

• Hard to communicate

• Hard to control resource consumption

• Multi-thread doesn’t support parallel execution
on MRI

Demonstration
MRI can not utilize CPUs with threads

make 20 threads running busy loop

(1..20).each do

each threads run busy loop

Thread.new{ loop{} }

end

Intel(R) Xeon(R) CPU E5-2630 v4
10 cores x 2 HT x2 CPUs = 40 logical CPUs

Background
Concurrent Thread
programming is hard

• Appropriate synchronization is needed

• Threads can share everything

• Critical bugs w/o synchronization
• Data race / race condition

• Dead/live locking

• Difficult debugging on non-
deterministic nature

• Difficult to tune the performance on
fine-grained synchronizations

Demonstration
Threads require synchronization

two threads increment numbers

counter = 0

get = proc{ counter }

(1..2).map do |i|

Thread.new do

1_000_000.times{ counter = get.call + 1 }

end

end.each{|t| t.join}

p counter #=> 2_000_000 is expected,

but 1709078, 1712839, …

Demonstration
Threads require synchronization

two threads increment numbers

counter = 0; m = Mutex.new

get = proc{ counter }

(1..2).map do |i|

Thread.new do

1_000_000.times{ m.synchronize{ counter = get.call + 1 }}

end

end.each{|t| t.join}

p counter #=> 2_000_000

Goal:
Easy and Parallel concurrent

programming on Ruby

Our proposal:

Ractor
an Actor-like
concurrent abstraction

Limited object sharing
between ractors

with inter-ractor
communication

“Guild” → “Ractor”

• Basic concept was proposed with “Guild” code name at RubyKaigi 2016 and 2018

• http://rubykaigi.org/2016/presentations/ko1.html

• https://rubykaigi.org/2018/presentations/ko1.html

• With Matz, we discussed the name of Guild and decided to change the class name
from Guild to Ractor (Ruby’s Actor-like).

http://rubykaigi.org/2016/presentations/ko1.html
https://rubykaigi.org/2018/presentations/ko1.html

Ractor
Concepts

• Run multiple ractors in parallel

• Limited object sharing

• Building ractors network with push/pull
types communication

• Sending objects with copy/move

• Ractor’s specificaiton:
https://github.com/ko1/ruby/blob/ract
or_parallel/doc/ractor.md

https://github.com/ko1/ruby/blob/ractor_parallel/doc/ractor.md

Ractors concept
Run multiple ractors in parallel

• Multi-Ractors in one process

• Ractor.new{ expr } makes
a new Ractor

• Ractor and thread
• A process has at least 1 ractor

• A ractor has at least 1 thread

• Threads in a Ractor can not run in
parallel (~2.7 compatible)

Demonstration
Making a ractor

r = Ractor.new do

p self #=> #<Ractor:#2 t.rb:1 running>

end

#=> warning: Ractor is experimental, and the behavior may change in future
versions of Ruby! Also there are many implementation issues.

#=> Ractor is an experimental feature on Ruby 3.0

Specifications can be changed with your voice!

Demonstration
Multiple Ractors run simultaneously

make 20 ractors running busy loop

(1..20).map do

each threads run busy loop

Ractor.new{ loop{} }

end

Demonstration
Ractor creation and waiting for the result

require "prime"

r = Ractor.new(2**61 - 1) do |i|

i.prime?

end

p r.take # You can get the result

#=> true

Demonstration
Heavy numeric calculation

Sequential thread

(t1 = Time.now

n1 = 2**61 - 1

n2 = 2**61 + 15

[n1.prime?, n2.prime?])

p Time.now - t1

multi-ractor

(t1 = Time.now

n1 = 2**61 - 1

n2 = 2**61 + 15

r1 = Ractor.new(n1){|p1| p1.prime? }

r2 = Ractor.new(n2){|p2| p2.prime? }

[r1.take, r2.take])

p Time.now - t1

Demonstration
Object creation on ractors is slower yet

def task =

1_000_000.times{''}

(t1 = Time.now

2.times{task}

Time.now - t1)

(t1 = Time.now

r1 = Ractor.new{ task }

r2 = Ractor.new{ task }

r1.take; r2.take

Time.now - t1)

0.2 seconds 0.7 seconds

Ractor’s concept

Limited object sharing

• The biggest difficulties of thread programming is shared everything

• Most of objects are not shared with multiple ractors
• String, Array, Hash, User defined objects…

• You can not introduce synchronization bugs because they are not needed on Ractors!

Ractor’s concept

Shareable objects

• Classes/modules

• Immutable objects (deeply frozen objects)
• Ractor.make_sharable(obj) makes obj recursively frozen

• Special shared objects
• Ractor objects

• Transactional variables (not introduced yet)

• Sharable Proc

• …

Ractor’s concept

Building ractors network
with push/pull types communication

• Make a program with multi-ractors network

• Ractors can wait for the message arrival

→ We can manage the control flow

• Two types communication APIs
• Push type (Ractor#send / Ractor.receive)

• Pull type (Ractor.yield / Ractor#take)

Ractor’s idea
Push type communication

Ractor: r1

r2.send(obj)

Ractor: r2

Ractor.receive
“r1 sends a message to r2”

Send a message to r2,
and return “send” immediately

Wait the message,
and return with a

receipt (copied) object

obj obj

copy object

Message passing / Actor style communication

Demonstration
Sending an object

r1 = Ractor.new do

obj = Ractor.receive

p obj.object_id #=> 80

end

obj = "hello"

p obj.object_id #=> 60

r1.send(obj)

r1.take # wait for the execution

Ractor:
main

Ractor: r1

main:
r1.send(“hello”)

“hello” “hello”

copy

r1:
Ractor.receive

id:60 id:80

Demonstration
Sending a nested object

r1 = Ractor.new do

obj = Ractor.receive

p obj[0].object_id #=> 80

end

obj = [[1], 2] # nested array

p obj[0].object_id #=> 60

r1.send(obj)

r1.take # wait for the execution

Ractor:
main

Ractor: r1

main:
r1.send([[1], 2])

[a, 2]

deep copy

r1:
Ractor.receive

a:[1]

[a, 2]

a:[1]

id:60 id:80

Ractor’s idea
Incoming queue and incoming port

Ractor: r1

r2.send(o1)

Ractor: r3
r2.send(o2)

Any ractors can send to r2

Ractor r2

Queue

o2

o1

o1

Ractor.receive

incoming
port

in
fi

n
it

e
 s

iz
e

Demonstration
Send to closed port

r1 = Ractor.new do

close_incoming

end

sleep 0.1 # wait for close

r1.send(1)
#=> The incoming-port is already closed (Ractor::ClosedError)

Ractor:
main

Ractor: r1

main:
r1.send(obj)

r1:
close_incoming

NOTE:
Incoming port will be closed
when the ractor is finished.
→ You can not send to a dead ractor

Ractor’s idea
Pull type communication

Ractor: r1

Ractor.yield(obj)

Ractor: r2

r1.take“r2 takes a message from r1”

Wait for taking ractor Wait of the message,
and return with a

receipt (copied) object

obj obj

copy object

Rendezvous style communication

Demonstration
Pull from a ractor

r1 = Ractor.new do

3.times{|i| Ractor.yield i }

:fin # the result of block will be yielded

end

4.times{ p r1.take } #=> 0 1 2 :fin

Ractor:
main

Ractor: r1

main:
r1.take

r1:
Ractor.yield 0
Ractor.yield 1
Ractor.yield 2
terminate with :fin

Ractor’s idea
Yield/take via outgoing port

Ractor r1

Queue

x

x

Ractor.receive

f(x)

Ractor.yield(f(x))

Ractor r2

y = r1.take

y

g(y)

Ractor.yield(g(y))

Queue
outgoing
port

Demonstration
Pipeline parallel

def task(n) = n + 1

r1 = Ractor.new do

loop{ Ractor.yield(task(Ractor.receive)) }

end

r2 = Ractor.new r1 do |r1|

loop{ Ractor.yield(task(r1.take)) }

end

r1.send(1)

p r2.take #=> 3

Ractor: r1 Ractor: r2

Ractor:
mainmain: r1.send main: r2.take

Demonstration
Close outgoing port

r1 = Ractor.new do

close_outgoing

end

r1.take

#=> `take': The outgoing-port is already closed (Ractor::ClosedError)

Ractor:
main

Ractor: r1

main:
r1.take

r1:
close_outgoing

NOTE:
Outgoing port will be closed
when the ractor is finished.
→ You can not take from a dead ractor

Demonstration
Taken by multi-ractors

main = Ractor.current

r1 = Ractor.new main do |main|

p r1: main.take

end

r2 = Ractor.new main do |main|

p r2: main.take

end

Ractor.yield(:messaeg)

#=> r1 or r2 take a message

Ractor:
main

Ractor: r1

Ractor: r2

main: Ractor.yield obj

r1: main.take

r2: main.take

Ractor’s idea
Load balancing with a bridge ractor

Ractor: r1

Ractor: r2

Ractor: r3

Ractor: bridge
loop do

Ractor.yield(

Ractor.receive)

end

Ractor: main

bridge.send(req)

A sent “obj” will be received
by idle ractor r1, r2 or r3

Ractor’s idea
Taking from multiple ractors with “select”

Ractor: r1

Ractor: main

Ractor.select(r1, r2, r3)

Ractor: r2

Ractor: r3

Ractor’s idea
Get the results from worker pool

Ractor: r1

Ractor: r2

Ractor: r3

Ractor: bridgeRactor: main

main: bridge.send(req)

main: Ractor.select(r1, r2, r3)

r1: bridge.take

r2: bridge.take

r3: bridge.take

Demonstration
Workers pool

require "prime"

def task(n) = [n, n.prime?]

bridge = Ractor.new{loop{Ractor.yield Ractor.receive}}

workers = (1..3).map{|i|

Ractor.new(bridge, name: "r#{i}"){|b|

loop{Ractor.yield task(b.take)}}}

3.times{|i| bridge.send 11 + i} # send 3 requests

3.times{ p Ractor.select(*workers) } # take 3 responses

#=> [#<Ractor:#3 r1 ...>, [11, true]]

#=> [#<Ractor:#3 r1 ...>, [13, true]]

#=> [#<Ractor:#4 r2 ...>, [12, false]]

Ractor: r1

Ractor: r2

Ractor: r3

Ractor: bridgeRactor: main

main: bridge.send(req)

Ractor’s idea
More complex ractor network

Ractor: r1

Ractor: r2

Ractor: r3

Ractor: bridgeRactor: main

main: Ractor.select(r4, r5, r6)

Ractor: r4

Ractor: r5

Ractor: r6

r1~r6 run their task in parallel

Ractor’s idea
Exception propagation

Ractor: r1

raise SomeError

Ractor: r2

r1.take

A ractor finished with an error

r2: r1.take

Exception will be propagated

r1.take raises a RemoteError
(like Thread#join)

Demonstration
Exception propagation

r1 = Ractor.new do

1+"2" #=> TypeError

end

begin

r1.take

rescue Ractor::RemoteError => e

p e #=> #<Ractor::RemoteError: thrown by remote Ractor.>

p e.cause #=> #<TypeError: String can't be coerced into Integer>

p e.ractor #=> #<Ractor:#2 … terminated>

end

Ractor:
main

Ractor: r1

main: r1.take

Ractor’s idea
Error recovery on the ractor network

Ractor: r1

Ractor: r2

Ractor: r3

Ractor: bridgeRactor: main

main: bridge.send(req)

main: Ractor.select(r4, r5, r6) #=> Error

Ractor: r4

Ractor: r5

Ractor: r6

r4: r1.take

r5: r2.take

r6: r3.take

If r2 terminated with an error, the error
will be propagated to r5 and main.
main can restart r2 and r5 if needed.

Important
semantic changes

• Completely compatible with Ruby 2.x if there is
only the main Ractor (first created Ractor)

• Limited to the main Ractor
• Global variables $gv

• Some ($stdout, $$ …) are Ractor local

• Class variables @@cv
• Instance variables of shareable objects

• Ivars of class/module are prohibited

• Constants refer to unshareable objects
• C = [1] is prohibited

• For Ractor programming, many modifications
are needed
• We are discussing how to provide an easy way to

make Ractor libraries

Ractor implementation progress

✅ Basic Ractor APIs

⬛ Advanced APIs

✅ Ruby apps without Ractor

⬛ Complex application with Ractor (not enough synchronizations)

⬛ Existing Ruby’s API considerations

⬛ C-extension supports

⬛ Performance tuning
$./miniruby -e Ractor.new{}

<internal:ractor>:37: warning: Ractor is experimental,

and the behavior may change in future versions of Ruby!

Also there are many implementation issues.

More interesting features…

• Sending message with copying/moving semantics

• Shareable “Proc” semantics

• Ractor-safe and efficient internal implementations

• …

Reference

• Ractor specification:
https://github.com/ko1/ruby/blob/ractor_parallel/doc/ractor.md

• RubyKaigi 2020 takeout presentation (“Ractor report”)
• More detailed data and programming models

• https://www.youtube.com/watch?v=40t8EPpnujg

• http://www.atdot.net/~ko1/activities/2020_rubykaigi.pdf

https://github.com/ko1/ruby/blob/ractor_parallel/doc/ractor.md
http://www.atdot.net/~ko1/activities/2020_rubykaigi.pdf
http://www.atdot.net/~ko1/activities/2020_rubykaigi.pdf

Conclusion

• Ruby can run in parallel with Ractor without
thread-safety headache

• You can enjoy ractor programming on Ruby 3.0

• Ractor API and implementation is not matured
• Ruby 3.0 is a Ractor preview release

• Your comments on your experience are welcome😍

Ractor
Demonstration

Koichi Sasada

Cookpad Inc.

RUBYCONF 2020

