RUBYCONF 2020

Ractor
Demonstration

Koichi Sasada

(from Japan)

Cookpad Inc.

P

cookpad

Ask Koichi

| will check tweets with “#ractor” hashtag on twitter so if you have
a question, please tell me.

 You can access this presentation slies on:
https://www.atdot.net/~ko1l/activities/

https://www.atdot.net/~ko1/activities/

« Parallel execution on Multi-core CPUs is important

BaCkgrOU nd « Multi-process programming is not easy

« Hard to communicate
* Hard to control resource consumption

D
ara”el | « Multi-thread doesn’t support parallel execution
Drogramming on MRI

Demonstration
MRI can not utilize CPUs with threads

make 20 threads running busy loop
(1..20) .each do
each threads run busy loop
Thread.new{ loop{} 1}

end

Intel(R) Xeon(R) CPU E5-2630 v4
10 cores x 2 HT x2 CPUs = 40 logical CPUs

1 [] 11 [] 211] 31 []
2 []] 4 | | ‘22]] 32 |]
3 [] 13 |] 23 |] 33 []
4 [] 14 [1 24 [] 34 []
5 [] - |] 25 [] 35 []
6 [] 16 [| I |] 36 []
7 [] 17 [1 27 [] 2 1]
8 [] 18 [1 28 [] 38 []
2 |] 19|] 29]] 39 |]
10 [] 20 [] 30 [] 40 []
Mem[| |] Tasks: 57, 11 thr; 1 running

irb(main):001:0> I

<@* bash 1 bash>

Background
Concurrent Thread
programming is hard

« Appropriate synchronization is needed
« Threads can share everything

« Critical bugs w/o synchronization
« Data race / race condition
« Dead/live locking

« Difficult debugging on non-
deterministic nature

e Difficult to tune the performance on
fine-grained synchronizations

Demonstration
Threads require synchronization

two threads increment numbers
counter = 0
get = proc{ counter }
(1..2) .map do |1
Thread.new do
1 000 000.times{ counter = get.call + 1 }

end
end.each{|t|] t.join}
p counter #=> 2 000 000 is expected,
but 1709078, 1712839,

Demonstration
Threads require synchronization

two threads increment numbers
counter = 0; m = Mutex.new
get = proc{ counter }
(1..2) .map do |1]
Thread.new do
1 000 000.times{ m.synchronize{ counter = get.call + 1 }}
end
end.each{|t|] t.join}
p counter #=> 2 000 000

Goal:
Fasy and Parallel conc

programming on

<L

Qur proposal:

Ractor

an Actor-like
concurrent abstraction

“Guild” — "Ractor”

e Basic concept was proposed with “Guild” code name at RubyKaigi 2016 and 2018
« http://rubykaigi.org/2016/presentations/kol.html
 https://rubykaigi.org/2018/presentations/kol.html

« With Matz, we discussed the name of Guild and decided to change the class name
from Guild to Ractor (Ruby’s Actor-like).

http://rubykaigi.org/2016/presentations/ko1.html
https://rubykaigi.org/2018/presentations/ko1.html

Run multiple ractors in parallel

Ractor
Concepts

Limited object sharing

Building ractors network with push/pull
types communication

Sending objects with copy/move

Ractor’s specificaiton:
https://github.com/kol/ruby/blob/ract
or parallel/doc/ractor.md

https://github.com/ko1/ruby/blob/ractor_parallel/doc/ractor.md

Ractors concept
Run multiple ractors in parallel

“%

« Multi-Ractors in one process N 7 \

P
L]
« Ractor.new{ expr } makes % T

a new Ractor ! " 4 4

e Ractor and thread =
« A process has at least 1 ractor <l =
A ractor has at least 1 thread

« Threads in a Ractor can not run in &
parallel (~2.7 compatible) -

Demonstration
NMaking a ractor

r = Ractor.new do
p self #=> #<Ractor:#2 t.rb:1 running>

end

#=> warnin%: Ractor is experimental, and the behavior may change in future
versions of Ruby! Also there are many implementation issues.

#=> Ractor is an experimental feature on Ruby 3.0
Specifications can be changed with your voice!

Demonstration
Multiple Ractors run simultaneously

make 20 ractors running busy loop

(1..20) .map do
each threads run busy loop

Ractor.new{ loop{} }

end

11
12
13
14
15
16
17
18
19
pAZ

21
22
23
24
25
26
27
28
29
30
Tas

31 [
32 [
33 [
34 [
35 [
36 [
[
[
[
[
n

&Y

C
AV AN

>

O O a4
0 O

C
AV I AY BN AN
Q QO 4
QY
D

-

QO G
o
O ©

Ny
AV AV AV

AV I AN

Q)

37
38
39
. 07 40
s 57, 11 thr; 1 vunning

QY] S
C

()

~

P O O O

LCoONOOTUVITE WN B
Lo B e W e T e T s T e W e W s W |

(&

)

O o C
)

el bd bl bl b Bl b b)) B B

o T e B e T s T e T s T e B e T s B s |

| IS [y NN By SRS By SUSNS by SUSS By SUSS Dy SUSSS Dy SUSSS by SUSS gy SS—)

0.¢

=
Y
~—
o
¢
P e T e W e W e W e W e W s W e W s Wy |

N ©

Q) o

e b b hd b] b e b) M)

=
()
3

—

(@)
L/

J)

N

U

irb(main):001:1* (1..20).map do
irb(main):002:1* # each threads run busy loop
irb(main):003:1% Ractor.new{ loop{} }
irb(main):004:0> endlj

© bash
<@* bash 1 bash>

&Y
o

O

o

e b d e e e e e e

C

v

=

o~

)

O O ©

QO C

IS

CPU Intel(R) Core(TM) i7-10810U CPU @ 1.10GHz

60 L EDERZE (%) 100%
A Al J\J \
A W il
/\4 A A ¥,

Demonstration
Ractor creation and waiting Tor the result

require "prime"

r = Ractor.new(2**6l1 - 1) do |1i]
1.prime?
end

p r.take # You can get the result
#=> true

Demonstration

Heavy numeric calculation

multi-ractor

Sequential thread

(tl
(tl = Time.now nl
nl = 2**0l1 - 1 oW
n2 = 2**pl + 15 rl
r2

[nl.prime?, nZ2.prime?])

p Time.now - tl

Time.now

2**6l - 1

2**61 + 15

Ractor.new(nl) {|pl| pl.prime? }
Ractor.new(n2) { |p2| p2.prime? }

[rl.take, r2.take])

p Time.now - tl

: S] 11 [] 211] 31 []
2 |] 12 [| I 22 |] 32 |]
3 [] 13 |] 23 |] 33 []
4 [] 14 [1 24 [] 34 []
5 [] - |] 25 [] 35 []
6 [] 16 [| I |] 36 []
7 [] 17 [1 27 [] 2 1]
8 [] 18 [1 28 [] 38 []
2 |] 19|] 29]] 39 |]
10 [] 20 [] 30 [] 40 []
Mem[| |] Tasks: 57, 11 thr; 1 running

irb(main):001:0> I

<@* bash 1 bash>

Demonstration
Object creation on ractors is slower yet

def task = |
_ (tl = Time.now
1 000 000.times{''}
- - rl = Ractor.new{ task }
| r?2 = Ractor.new{ task }
(tl = Time.now
| rl.take; r2.take
2.times{task} |
| Time.now - tl)
Time.now — t1l)

0.2 seconds 0.7 seconds

Ractor's concept
_imited object sharing

 The biggest difficulties of thread programming is shared everything

* Most of objects are not shared with multiple ractors

« String, Array, Hash, User defined objects:--
 You can not introduce synchronization bugs because they are not needed on Ractors!

Ractor’'s concept
Shareable objects

e Classes/modules

« Immutable objects (deeply frozen objects)
* Ractor.make sharable (obj) makes obj recursively frozen

e Special shared objects

e Ractor objects
- Transactional variables (not introduced yet)

« Sharable Proc

Ractor’'s concept
Building ractors network

with push/pull types communication

« Make a program with multi-ractors network
« Ractors can wait for the message arrival
— \We can manage the control flow

e Two types communication APls

« Push type (Ractor#send / Ractor.receive)
« Pull type (Ractor.yield / Ractor#take)

Ractor's idea
Pusn type communication

e copy objem | ™~
Ractor: rl N Ractor: r2

@
r2.send (ob7j) “r1 sends a message to r2" Ractor.receive
N / N /
Send a message to r2, Wait the message,
and return “send” immediately and return with a

receipt (copied) object

Message passing / Actor style communication

Demonstration
Sending an object

main:

Ractor:]rl.send(“heno") ‘ _
rl = Ractor.new do [main 1 f{Fm“m”{]n
obj = Ractor.receive M/ o
p obj.object id #=> 80 copy
end
obj] = "hello"

p obj.object id #=> 60
rl.send (obj)
rl.take # wait for the execution

Demonstration
Sending a nested object

main:

{ Ractor:] rl.send([[1], 2]) 1

- »@ Ractor:rl
rl - RaCtor - Tew dO Al rRle;ctorreceive{ [a, 2]
obj = Ractor.receive o
id:60 deep copy S idi80

p obj[0].object id #=> 80
end
obj = [[1], 2] # nested array
p obj[0].object id #=> 60
rl.send (obj)
rl.take # wait for the execution

Ractor’'s idea

ncoming queue and incoming port

/

-

Ractor: rl

r2.send(ol)

\

Ractor r2

/

Ractor: r3
r2.send(o2)

Any ractors can send to r2

‘wming'
port

infinite size

o O
- HNEF

©

Ractor.receive

Demonstration
Send to closed port

main:

: r1.send(obj)
1 = Ractor:) Ractor: r1
r Ractor.new do main | B

close_incoming

close incoming
end NOTE:
. Incoming port will be closed
sleep 0.1 # wait for close when the ractor is finished.

— You can not send to a dead ractor

rl.send (1)

#=> The incoming-port is already closed (Ractor::ClosedError)

Ractor.yield (obj)
e

¢

N
4

Ractor’s idea
Pull type communication

- copy objem ™
obj
Ractor: rl J Ractor: r2

/

Wait for taking ractor

Rendezvous style communication

“r2 takes a message from rl”

»
»

-

rl. take

/

Wait of the message,
and return with a

receipt (copied) object

Demonstration
Pull from a ractor

main:
Ractor]‘ rl.take
main | 1:
Ractor.yield 0

r]_ — RaCtor ° new do Ractor.yield 1

Ractor.yield 2
terminate with :fin

[Ractor: rl]

3.times{|1| Ractor.yield 1 }

:fin # the result of block will be yielded
end
4.times{ p rl.take } #=> 0 1 2 :fin

Ractor's idea
Yield/take via outgoing port

l
Queue

X

Ractor rl

Ractor.yield(f(x))
Y

Ractor.receive

outgoingw

port

Ractor r2

® | Ractor.yield(g(y))

»(D
i 4

y = rl.take

Demonstration
Pipeline parallel

\ 4

a{ Ractor: rl %

(Ractor: r2 %}—
\
([Ractor:

.
main: rl.send (____Mmain] main: r2.take

def task(n) = n + 1
rl = Ractor.new do
loop{ Ractor.yield(task (Ractor.receive)) }
end
r2 = Ractor.new rl do |rl]|

loop{ Ractor.yield(task(rl.take)) }
end
rl.send (1)
p r2.take #=> 3

Demonstration
Close outgoing port

ril Ractor.new do

close outgoing
end

rl.take

#=> “take': The outgoing-port is

main:

Ractor: lrl.take (.
{ nain J QL Ractor: rl

rl:
close_outgoing

NOTE:

Outgoing port will be closed

when the ractor is finished.

— You can not take from a dead ractor

already closed (Ractor::ClosedError)

Demonstration

Taken by multi-ractors

main = Ractor.current

rl = Ractor.new malin do |main|
p rl: main.take

end

r2 = Ractor.new mailin do |main|
p r2: maln.take

end

Ractor.yield (:messaeq)

#=> rl or r2 take a message

r1: main.take

[

p
Ractor:)
. » Ractor: rl
main) .
main: Ractor.yield obj 2: main.take
Ractor: r2

Ractor’'s idea

_oad balancing with a bridge ractor

-

-

Ractor: main

bridge.send(req)

~

J

Ractor: rl
4 Ractor: bridge))
loop do ~
® Ractor.yield(Ractor: r2
Ractor.receive) /
end)
. / Ractor: r3

J

A sent “obj” will be received
by idle ractor r1, r2 or r3

Ractor's ides
Taking from multiple ractors with “select”

Ractor: rl

Ractor: main

Ractor: r2

Ractor.select(rl, r2, r3)
\ J

Ractor: r3

— — o —

Ractor's idea
Get the results from worker pool

rl: bridge.take
4

main: bridge.send(req) Ractor: rl

4 N \
r2: bridge.take
(
Ractor: main =£ Ractor: bridge » Ractor: r2
.
N) 3:bHd§eiake

4

Ractor: r3

i b i o

main: Ractor.select(r1, r2, r3)

Demonstration
Workers pool

requlire "prime"

def task(n) = [n, n.prime?]

main: bridge.send(req)

[Ractor: main H Ractor: bridge

A

bridge = Ractor.new{loop{Ractor.yield Ractor.receilve}}

workers = (1..3) .map{|1]

Ractor.new (bridge, name: "r#{i}") {|b|

loop{Ractor.yield task (b.take)
3.times{|1| bridge.send 11 + 1i}

3.times{ p Ractor.select (*workers)

#=> [#<Ractor:#3 rl ...>, [11l, true]]
#=> [#<Ractor:#3 rl ...>, [13, true]l]
#=> [#<Ractor:#4 r2 ...>, [12, false]]

I8

send 3 requests

} # take 3 responses

Ractor’'s idea

Vlore complex ractor network

Ractor: rl

Ractor: r4 %

Ractor: r2

Ractor: rb ?

Ractor: main ﬂ{ Ractor: bridge

Ractor: r3

TTT

Ractor: r6 %7

main: Ractor.select(r4, rb, r6)

rl1~r6 run their task in parallel

Ractor’s idea
-xception propagation

Ractor: rl 2- r1.take (Ractor: r2
raise SomeError Exception will be propagated t rl.take Q
A ractor finished with an error rl.take raises a RemoteError

(like Thread#join)

Demonstration
Exception propagation

rl = Ractor.new do [Rr?ﬂ(:izr-] [Ractor: rg
1+"2" #=> TypeError 1 |

end main: rl.take Q

begin
rl.take

rescue Ractor::RemoteError => e
p e #=> #<Ractor::RemoteError: thrown by remote Ractor.>
p e.cause #=> #<TypeError: String can't be coerced into Integer>
p e.ractor #=> #<Ractor:#2 .. terminated>

end

Ractor’'s idea
- rror recovery on the ractor network

main: bridge.send(req)

Ractor: main

~

'{ Ractor: bridge

r4: rl.take

Ractor: rl %—» Ractor: r4 %%
5: 12take

Ractor: rZS—v Ractor: r5§—
\r3.take

Ractor: r3 Ractor: rb ef—

main: Ractor.select(r4, r5, r6) #=> Error

®

If r2 terminated with an error, the error
will be propagated to r5 and main.
main can restart r2 and rb if needed.

« Completely compatible with Ruby 2.x if there is
| 18 pO rta HJ[only the main Ractor (first created Ractor)

Semaﬂtic Changes « Limited to the main Ractor

« Global variables $gv
« Some ($stdout, $$ ---) are Ractor local
e Class variables @@cv
« Instance variables of shareable objects
- |vars of class/module are prohibited
« Constants refer to unshareable objects
e C = [1] is prohibited
« For Ractor programming, many modifications
are needed

 We are discussing how to provide an easy way to
make Ractor libraries

Ractor implementation progress

Basic Ractor APls
B Advanced APIs

Ruby apps without Ractor
B Complex application with Ractor (not enough synchronizations)

Bl Existing Ruby’s API considerations

B C-extension supports
B Performance tuning

$./miniruby -e Ractor.new{}
<internal:ractor>:37: warning: Ractor is experimental,

and the behavior may change in future versions of Ruby&jg
Also there are many implementation issues. ¥

More interesting features---

« Sending message with copying/moving semantics
« Shareable “Proc” semantics
« Ractor-safe and efficient internal implementations

Reference

e Ractor specification:
https://github.com/kol/ruby/blob/ractor parallel/doc/ractor.md

« RubyKaigi 2020 takeout presentation (“Ractor report”)

 More detailed data and programming models
e https://www.youtube.com/watch?v=40t8EPpnujg
e http://www.atdot.net/~kol/activities/2020 rubykaigi.pdf

https://github.com/ko1/ruby/blob/ractor_parallel/doc/ractor.md
http://www.atdot.net/~ko1/activities/2020_rubykaigi.pdf
http://www.atdot.net/~ko1/activities/2020_rubykaigi.pdf

Conclusion

« Ruby can run in parallel with Ractor without
thread-safety headache

* You can enjoy ractor programming on Ruby 3.0

« Ractor APl and implementation is not matured
 Ruby 3.0 is a Ractor preview release
* Your comments on your experience are welcome &

Ractor
Demonstration

Koichi Sasada

Cookpad Inc.

P

cookpad

