
Making *MaNy* threads
on Ruby

Koichi Sasada

Cookpad Inc.

ko1@cookpad.com

1
RubyKaigi 2022

MaNy Project

• Goal: Make MANY threads (> 100K)
• Support massive network concurrent connections

• HTTP/2, WebSocket, GRPC, …
• Like Go, Erlang, …

• Lightweight Ractor creation
• Many actors like Erlang

• Technique: M:N threads
• M native threads (M is about nproc) and N (> 100K) Ruby threads

• Current: 1:1 model (N Ruby threads on N native threads)
• Great reference to Go's implementation

• Two-level scheduling
• Ractor level M:N scheduling
• Thread level 1:N scheduling

❗ The name “MaNy” is invented by @nobu

Today’s talk

2

About Koichi Sasada

• Ruby interpreter developer employed by
Cookpad Inc. (2017~) with @mame
• YARV (Ruby 1.9~)

• Generational/Incremental GC (Ruby 2.1~)

• Ractor (Ruby 3.0~)

• debug.gem (Ruby 3.1~)

• …

• Ruby Association Director (2012~)
• 2022 Call for Grant Proposals (~ Oct 3, 2022)

3

🏇

https://www.ruby.or.jp/en/news/20220823

Motivation
Highly concurrent language Ruby
• Support to make a highly concurrent applications by

scripting in Ruby
• Make MANY threads (> 100K)

• Support massive network concurrent connections

• HTTP/2, WebSocket, GRPC, …

• Like Go, Erlang, …

•Lightweight Ractors
• Actor programming with many actors like Erlang

• To encourage casual concurrent / parallel programming with
Ractor on Ruby

4

CPU
Core

Background
Thread system implementation techniques

📗 Study in computer science/OS area
📌NT: Native thread or kernel thread

NT

RT

CPU
Core

RT RT

NT

RT

CPU
Core

RT RT

NT

RT

CPU
Core

RT RT

NT NT

CPU
Core

NT

CPU
Core

1:N (Ruby ~1.8) 1:1 (Ruby 1.9~)
M:N

(M = 2)
User

OS/Lib

H/W

How to handle N=3 Ruby threads (RTs) on 2 CPU cores?

1:N model
Green threads, user level threads, …

• Only 1 native thread (NT) run multiple threads
• Ruby ~1.8

•😀 Completely controllable

•😀 Lightweight (in theory)

•😨 Can not run in parallel

•😨 Difficult to handle blocking operations

NT1

T1 T2 T3 T1

time

6

NT2

❗ Only NT1 is used!

🏇

1:1 model
Most simplified technique

• 1 native thread per Ruby thread
• Ruby 1.9~ (has GVL limitation. This page eliminates it)

•😀 Simple, easy to handle blocking operations (system does)

•😀 Can run in parallel on multi-core systems

•😨 More overhead (compare with 1:N, in theory)

•😨 Less controllable (only native thread system schedules)

NT1

T1

NT2
T2

NT3 T3

Create T2

Create T3

🚫 7

🏇

M:N threads
Best performance (in theory) and complicated

• Mixed with pros. (and cons.) of 1:N and 1:1
•😀 Controllable (in theory)

•😀 Lightweight (in theory)

•😀 Can run in parallel

•😨 Difficult to handle blocking operations

•😨 Complex

NT1

T1 T3

T1

NT2

T2

Create T2

{Create T3}

sample: M = 2 (only NT1 and NT2) 8

{I/O blocking}

{Time slice}

🏇

❗T1 runs on NT1 and NT2

M:N threads
Existing implementations
• Operating systems

• Solaris, FreeBSD, … (now they use 1:1 threads)

• Language native
• Go’s goroutines

• Erlang’s (Elixir’s) processes

• Extensions
• Java’s virtual threads (JEP 425: Virtual Threads)

• Rust’s tokio, …

9

Ruby’s case

• Threads run in concurrently, not in parallel
• Concurrent

• Context switch by time slice (100ms)
• Switch on blocking operations like blocking I/O

• Not in parallel: A giant lock (GVL) keeps running 1 thread on a Ractor.

• Ractors can run in parallel
• A Ractor has at least 1 thread
• Threads on different ractors can run in parallel

• 1:1 threads can not make 100K threads/ractors because of
some limitations
• Creation overhead and OS resource limitations
• M:N technique is used by recent “concurrent” languages and how about

on Ruby like Go language without changing anything …?

❗ GVL had stood for “Global VM
Lock” because it is only 1 lock
per VM (only 1 thread has GVL
can run on a Ruby VM).
However, GVLs are available per
a ractor. In this talk we continue
to use the word GVL and we can
say Great Valuable Lock or
anything you like.

MaNy project
Introduce M:N scheduler into Ruby

11

Two-level scheduling

• Ractor level scheduling
• Run ractors on M native threads (M:N model)

• Global ready queue (GRQ) manages runnable Ractors

• Thread level scheduling
• Run threads on 1 native thread (1:N model)

• Thread ready queue (TRQ) manages runnable Ruby threads in a Ractor

• Use multiple native threads to handle unmanaged blocking ops.

• Support 1:1 model mode for compatibility

• Misc
• Both FIFO scheduler (no priority queue(s))

• Re-introduce a timer thread to manage context switch (Go’s sysmon)
12

M:N Ractor level scheduling (M=2)

NT1

R1

NT2

R2

R3

R1 creates R2 and run on NT2
GRQ: []

GRQ: []

GRQ: [R3]

R1 creates R3
Switch to R3 by time slice

R1

Switch to R1 GRQ: []

{I/O blocking}
→ No ready threads on R2

📌 Ractor R1, R2, R3 have 1 thread, respectively.
💪 R1 runs on NT1 and NT2 (M:N scheduler)

GRQ: [R1]

1:N Thread level scheduling in a Ractor

NT1

Timer Thread

RT1

time slice
notification

time slice
notification

TRQ: []

RT2

TRQ: [RT3, RT1]

RT3

TRQ: [RT1, RT2]

RT1

TRQ: [RT2, RT3]

RT1 creates RT2
TRQ[RT2]

RT1 creates RT3
TRQ[RT2, RT3]

time slice
notification

100ms

14

Handle blocking operations

• We need to handle “Blocking operations” for user level scheduling,
otherwise all threads stops

• Blocking operations
• Managed blocking operations

• I/O (most of read/write)
• manage by I/O multiplexing API (select, poll, epoll, kqueue, IOCP, io_uring, …)

• Sleeping
• Synchronization (Mutex, Queue, …)

• Unmanaged blocking operations
• All other blocking operations not listed above, written in C

• Huge number calculation like Bignum#*
• DNS lookup

• I/O (can not detect block-able or not)

• open on FIFO, close on NFS, …
• …

15

Handle blocking operations
on existing Ruby versions
• Ruby ~1.8 on 1:N model

• Only handle managed blocking operations.

• Can not handle unmanaged blocking operations… (stop all threads).
• ex) system’s DNS resolver can stop all threads, but resolve.rb does not stop.

•😨 Difficult to handle blocking operations (only the interpreter can do it)

• Ruby 1.9~ on 1:1 model (2007~, 15 years)
• Can handle all blocking operations by releasing GVL

• “rb_thread_call_without_gvl(func)” API ← 💛 Easy to use

• Other threads can run.

• Not handled blocking operations can stop all threads, but after 15 years,
most of critical operations are handled with the API 💚

16

🏇

Handle blocking operations
on MaNy
• Managed blocking operations

• Blocking I/O, sleep, synchronizations are managed by a scheduler

• Timer thread observe I/O events and schedule
• epoll, kqueue, IOCP (now only epoll is supported)

• Unmanaged blocking operations
• Run a blocking operations on a native threads marked by dedicated

• DNT (Dedicated native thread) pinned down to a Ruby thread

• Add a new native thread to run other threads if blocking operations
consume a time
• Timer thread observes native threads count for scheduling

17

🏇

Handle managed blocking operations

NT1

Timer Thread

RT1

{blocking read}

{IO is ready}

(3) Add RT1 to ready queue
→ TRQ: [RT2, RT1]

RT2

RT3

Start status:
Ruby threads RT1, RT2, RT3 are there
TRQ (Thread Ready Queue) is [RT2, RT2]

(1)Register RT1 is
waiting for IO

(2) Switch to RT2

RT1

RT2

TRQ: [RT2]

TRQ: [RT3, RT1]

TRQ: [RT2, RT3]

time slice
notification

time slice
notification

TRQ: [RT3]

TRQ: [RT2, RT3]

Continue with IO result

time slice
notification

❓ RT1 can be scheduled early

18

🏇

Handle unmanaged blocking operations (M=1)

NT1

NT2

Timer Thread

RT1 {start blocking op}

mark NT1
dedicated (DNT)

Detect no NT for thread scheduling

Add new NT2 and resumes RT2

RT2 RT3

Remove NT1 because
NT2 is already used
(M=1 < NT num=2)

{finish blocking op}

❗ There are many DNT (≦RT num）

🚫

TRQ: [RT2, RT3]

TRQ: [RT3] TRQ: [RT2]

TRQ: [RT2, RT1]

Make RT1 ready

RT2

TRQ: [RT1, RT3]

RT1

TRQ: [RT3, RT2]

Start status:
Ruby threads RT1, RT2, RT3 are there
TRQ (Thread Ready Queue) is [RT2, RT2]

19

Compatibility issue

• C-extensions can rely on 1:1 model
• Doesn’t work if it relies on NT’s Thread-Local-Storage (TLS)
• ... other cases? depends on native thread ID?

→ Compatibility mode
• Bind dedicated native thread (DNT) → Force 1:1 model mode

• Go’s runtime.LockOSThread()
• ex) Thread.bind_dedicated_native_thread = true

• Default?
• Bind DNT if user specifies (Go’s approach, because Go hadn’t compat. issue)
• Bind DNT only with the main thread (← Current choice)
• Bind DNT with threads on the main ractor (safer choice)

• Support scheduling with normal NT and DNT (complex)

20

Bound threads for compatibility
1:1 model

21

NT1

RT1

NT2
RT2

NT3 RT3

Create RT2

Create RT3

🚫 21

Thread.bind_dedicated_native_thread = true # not fixed name

🏇

Advantages of M:N

• Lightweight threading (and ractor system)
• Remove impedance mismatch between NT scheduler and Ruby’s

scheduler especially with GVL
• No synchronization is needed to control within a Ractor

• (Slightly) lightweight creation
• pthread_create() is fantastic fast on recent systems, so not big impact

22

Disadvantage of M:N

• Compatibility issue (already discussed)

• Complication

• Overhead
• (Slightly) overhead for I/O by checking blockable operation or not

• (Slightly) introducing a timer native thread for management

• Change visibility outside from Ruby process
• Metrics tools like ps, top, …

• gdb (debugger)
• hard to debug native threads without not running RTs

• rb_bug() prints huge lines of memory maps (thread count * 2)

23

Compare with fiber scheduler (Ruby 3.0~)

• Similar motivation (to support huge number of connections)

• Good for fiber scheduler
• Ruby user can write a scheduler

• Can mark best score with the well-tuned scheduler for the application

• Non-MRI implementations can use the scheduler written in Ruby

• Good for MaNy Project
• Ruby users don’t need to care about a scheduler

• Can mark better score without changing threaded apps

• (Hopefully) no hungs on unmanaged blocking operations (like current threads)

• Timeslice is provided (auto-context switch)

• Integration with Ractor system → parallel computation

24

Other interesting topics

• O(n…) traps
• Deadlock detection code can iterate all threads

• Works well for small number of threads, but superslow for many threads (O(nm))
• Thread.list uses alloca(thead_num) and it causes stack overflow
• rb_notify_fd_close() iterates all waiting fds (O(n^2))
• …

• Implementation
• Two level scheduling with dedicated native threads (1:1)
• Signal handling
• Context management (stack management, context switching, …)
• Time slice provider
• Debug techniques (logging system)
• Scheduler functions (naming)

• Others
• Mysterious OS limitations for native threads
• top (linux /proc) sometimes shows strange values
• … 25

🏇

Evaluation

26

Evaluations environment

• Machine
• Intel(R) Core(TM) i7-6700 CPU, 4 cores, 8 HW threads, 64GB mem
• Linux 5.4.0-125-generic (Ubuntu 20.04)

• ulimit -n `ulimit -Hn` (to increase open files for sockets)
• vm.max_map_count = 2,000,000 (a thread consumes 2 maps)

• Base ruby: ruby 3.2.0dev (2022-07-26T07:03:44Z master 9a8f6e392f)
[x86_64-linux]
• RUBY_THREAD_VM_STACK_SIZE=32768 (32KB, default: 1MB) because master

speed decreases in proportion to the VM stack size (will be solved)

• Client machine
• AMD Ryzen 9 5900HX , 8 cores, 16 HW threads, 16GB mem

• Code
• MaNy branch: https://github.com/ko1/ruby/tree/many
• Examples: https://github.com/ko1/many_examples

27

🏇

https://github.com/ko1/ruby/tree/many
https://github.com/ko1/many_examples

Thread creation

28

0

10

20

30

40

50

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

T
im

e
 (

s
e
c
)

Concurrent threads

Many/Thread Total

Master/Thread Total

MaNy Ruby
master (~170K threads)

make x threads and stop them

restart them

join all and GC.start

Thread creation
GC overhead

29

0

10

20

30

40

50

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

T
im

e
 (

s
e
c
)

Concurrent threads

Many/Thread create Many/Thread join/GC

Many/Thread/GC.disablee create Many/Thread/GC.disablee join/GC

MaNy Ruby (create)
MaNy Ruby/GC.disable (create)

join & GC.start

GC.disable

make x threads and stop them

restart them

join all and GC.start

1M creat.→ 40 sec
1 creat. → 40 usec

1M creat.→ 7 sec
1 creat. → 7 usec

Ractor creation

30

🏇

❗

0

500

1000

1500

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

T
im

e
 (

s
e
c
)

Concurrent threads/ractors

Thread/MaNy Total Master/Thread Total

Ractor/MaNy Total Ractor/MaNy/GC.disable Total

Ractor creation

31

🏇

0

10

20

30

40

50

60

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

T
im

e
 (

s
e
c
)

Concurrent threads/ractors

Thread/MaNy Total Master/Thread Total Ractor/MaNy/GC.disable Total

😨

❗ Synchronization issue…?

Ring example

• Prepare n threads ordered sequentially

• Pass a message to the next Ruby thread with Queue

RT0

RT1

RT2… many threads …

msg

32

RTn

Ring example

33

0

50

100

150

200

250

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

T
im

e
 (

s
e
c
)

Concurrent threads

loop(med) loop(med)/master

Loop on master

Loop on MaNy

❗ Kernel/Ruby scheduler’s impedance mismatch
(GVL handling)

(med: median value of 3 trials)

Ring example

34

0

0.2

0.4

0.6

0.8

1

1.2

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

T
im

e
 (

s
e
c
)

Concurrent threads

loop(med)

Loop on MaNy

(med: median value of 3 trials)

1M pass. → 1 sec
1 pass. → 1 usec

🏇

Ring example
Compare with Go/Loop time

35

0

0.2

0.4

0.6

0.8

1

1.2

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

loop(med) loop(med)/go

🏇

Go 1.19

1M pass. → 0.35 sec
1 pass. → 0.35 usec

1M pass. → 1 sec
1 pass. → 1 usec

The overhead is from interaction with the timer thread…?

Loop on MaNy

Loop on Go

Ring example
Compare with Go/Creation time

36

0

10

20

30

40

50

1
,0

0
0

3
4
,0

0
0

6
7
,0

0
0

1
0
0
,0

0
0

1
3
3
,0

0
0

1
6
6
,0

0
0

1
9
9
,0

0
0

2
3
2
,0

0
0

2
6
5
,0

0
0

2
9
8
,0

0
0

3
3
1
,0

0
0

3
6
4
,0

0
0

3
9
7
,0

0
0

4
3
0
,0

0
0

4
6
3
,0

0
0

4
9
6
,0

0
0

5
2
9
,0

0
0

5
6
2
,0

0
0

5
9
5
,0

0
0

6
2
8
,0

0
0

6
6
1
,0

0
0

6
9
4
,0

0
0

7
2
7
,0

0
0

7
6
0
,0

0
0

7
9
3
,0

0
0

8
2
6
,0

0
0

8
5
9
,0

0
0

8
9
2
,0

0
0

9
2
5
,0

0
0

9
5
8
,0

0
0

9
9
1
,0

0
0

setup/many setup/go

🏇

The overhead may be from
• GC
• The first time memory setup

• System calls (mmap, mprotect)
• Physical page allocation by OS

❓❓

Chat server example

Server
client1

client2

client3

“hello”

“hello”

“hello”

“hello”

• A client sends a message, and
the server sends a received
message to all connected clients.

• A blocked client should not block
other clients

• The server and clients are
connected with TCP/IP

37

Chat server example: Queue version

Server
client1

client2

client3

W1

W2

W3

R1

R2

R3

• Prepare a reader thread and a writer thread for each
connection. → 2*n threads for n connections

• Readers and writers should be separated because
writing to the socket can block.

Readers and writers are connected with
Queues (green lines) 38

Array of writers

🔑

🏇

Chat server example: Broker version

Server
client1

client2

client3

W1

W2

W3

R1

R2

R3

• Add a broker thread
• Readers send message to the broker, and it

broadcast to writers. No Mutex🔑!
Readers and writers are connected with

Queues (green lines)

Broker

39

🏇

Chat server example
RTT x 100

40

0

50

100

150

200

0 10,000 20,000 30,000 40,000 50,000 60,000

T
im

e
 (

s
e
c
)

Concurrent connections

Many/Broker 100*(post+get*n) Many/Queue 100*(post+get*n) Master/select 100*(post+get*n)

Master/broker 100*(post+get*n) Master/queue 100*(post+get*n)

from clients

100.times{

socks[n/2] << “msg”

socks.each{|s| s.gets} }

Master

MaNy

IO.select without
any threads

Chat server example
Connection time

41

0

50

100

150

200

0 10,000 20,000 30,000 40,000 50,000 60,000

T
im

e
 (

s
e
c
)

Concurrent connections

Many/Broker Create Many/Queue Create Master/select Create

Master/broker Create Master/queue Create

IO.select without
any threads

poll(2)’s overhead

🏇

Future work

• MaNy project
• Complete implementations

• Ractor support

• Increase supported platforms (Mac, Windows, …. Now Linux only)

• Merge into master (3.2…?)

• Ractor local GC (working with a GSoC student)

• Feasible debugger for massive concurrent application

42

→ Make Ruby as a casual concurrent language

Acknowledgements

• Matz, mame and other reviewers of our design

• Yuki Torii helps me a lot to attend RubyKaigi 2022

43

MaNy Project

• Goal: Make MANY threads (> 100K)
• Support massive network concurrent connections

• HTTP/2, WebSocket, GRPC, …
• Like Go, Erlang, …

• Lightweight Ractor creation
• Many actors like Erlang

• Technique: M:N threads
• M native threads (M is about nproc) and N (> 100K) Ruby threads

• Current: 1:1 model (N Ruby threads on N native threads)
• Great reference to Go's implementation

• Two-level scheduling
• Ractor level M:N scheduling
• Thread level 1:N scheduling

Today’s talk

44

