
Ractor Enhancements,
2024

Koichi Sasada

STORES, Inc.

Today’s topics

• Support important features on Ractors
• “require”

• “timeout”

• Memory management issues on Ractors

• Future enhancement plans
• GC strategy

• Proposed APIs

Koichi Sasada

• Ruby interpreter developer employed by
STORES, Inc. (2023~) with @mametter
• YARV (Ruby 1.9~)

• Generational/Incremental GC (Ruby 2.1~)

• Ractor (Ruby 3.0~)

• debug.gem (Ruby 3.1~)

• M:N Thread scheduler (Ruby 3.3~)

• …

• Ruby Association Director (2012~)
Glad to be here again

this year!

“Ractor” is

• introduced from Ruby 3.0

• designed to enable

• parallel computing on Ruby for more
performance on multi-cores
• It can make faster applications

• robust concurrent programming
• No bugs because of object sharing

Strict Ractor rules to make safer
concurrent programming
• Limiting object sharing features between Ractors

• Unshareable and shareable objects
• Unshareable objects – most of objects

• Sharable objects – some special objects
• Immutable objects

• Some special objects

• Class/Modules

• Ractor objects

• …

• Constants (and so on) can not get/set unshareable objects by child
Ractors (= non main Ractors).

• Global variables are not accessible from child Ractors.

• …

Issues on Ractors

• Lack of important features
• “require” on child Ractors

• “timeout” on child Ractors

• …

• …

• Performance degression
• on memory management

• …

• …

Issue of “require”
Child Ractors can not call “require”
• Some code requires library in a method on child Ractors

• “autoload” case
• def foo = (require “foo”; Foo.foo)

• “pp” case – require “pp” when the first “pp” is called

• So, we need to allow “require” on child Ractors

• “require” is prohibited by child Ractors because
• It access $LOAD_PATH, $LOADED_FEATURES and so on
• The loaded code can define constants with unshareable objects

STR = “str” # set an unshareable object

• Complex logics on RubyGems

• “require” should be done on main Ractor

“require”
Solution: “require” on main Ractor
• Introduce new API “Ractor#interrupt_exec{ expr }”

• Run expr on a receiver Ractor’s main thread asynchronously
• The block will be translated to the shareable Proc (can’t access outer scopes)

• The return value of expr will be ignored so should be sent explicitly

• It likes trap handler and sending a signal (therefore it is danger too)

• The main thread will be interrupted any methods such as IO
blocking and so on (like signal handling)

• Ractor.main.interrupt_exec{ $g=1 } runs “$g=1” on
the main thread of the main Ractor
• Useful to access resources which are limited to main Ractor

• Need some overhead to interrupt main thread

(Child Ractor)

(Main Ractor)

Implement “require” with
Ractor#interrupt_exec

T/main

T/r

3. Restart main’s logic

1. Ractor.main.interrupt_exec{ expr }

(and do not wait for the end of expr)

2. Pause main’s logic
and execute “expr”

<expr>

Implement “require” with
Ractor.require(feature)

class Ractor

def self.require(feature)

c = Ractor::Channel.new

Ractor.main.interrupt_exec do

Thread.new do

c << require(feature)

rescue Exception => e

c << e

end

end

c.take

end

• Ask main Ractor to require

• Call “require” on another
thread because of recursive
lock (dead lock)

• Caller Ractor should wait for
the result of “requie”

def Ractor::Channel.new =

Ractor.new{loop{ Ractor.yield Ractor.receive }}

(Child Ractor)

(Main Ractor)

Implement “require” with
Ractor.require(feature)

T/main

T/r

2. Ractor.main.
interrupt_exec(&b)

3. Thread.new

T/req
4. require(feature)

5. Send a require’s result

Restart main’s logic

<Wait for the result>

1. Ractor.require(feature) 6. Restart T/r with the result

Implement “Kernel#require” with
Ractor.require

module Kernel

def require(feature)

return Ractor.require(feature) unless Ractor.main?

original require on main Ractor

end

end

def Ractor.main? = Ractor.current == Ractor.main

Issue of Ractor supported “require”

• Some library override “Kernel#require()”
• Rubygems

• Bundler

• …

• All of them need to insert non-main Ractor guard

def require(feature)

return Ractor.require(feature) unless Ractor.main?

…

• Can we ask to add this line at the beginning of all overriding
definitions?

Issue of Ractor supported “require”
Provide prepended module?

prepend a module to Kernel can solve it

module RactorAwareRequire

def require(feature) =

Ractor.main? ? Ractor.require(feature) : super

end

module Kernel

prepend RactorAwareRequire

end

but all ancestors of classes contains it

p ''.class.ancestors

=> [String, Comparable, Object, RactorAwareRequire, Kernel, BasicObject]

Off-topic
Ractor/Thread#interrupt_exec

• This feature is useful for debuggers to stop all threads
• Current debugger doesn’t support Ractors → Key feature for it

• Current debugger implementation using “line” TracePoint to stop all
threads, but we can’t stop threads running “blocking operation” (I/O
waiting and so on) and can not access to the thread information.

• This feature is danger like trap handlers because it can be
interrupts any code such as cleanup code in ensure
• With great power comes great responsibility

• Difficult to introduce Ruby’s features? (C-API?)

Main Ractor

Child Ractor

Issue of “timeout”

• “timeout” library uses Thead to send asynchronous exception
to the timeout thread

• Can not communicate between Ractors

Timeout
monitor
thread

Thread 1

Thread 2

Register/unregister timeout

Raise Timeout::Error if timeout occurs

Thread 3
in Ractor 2

Threads can not communicate
between Ractors

Main Ractor

“timeout”
Solution 1: Prepare a monitor per each Ractor

• Provide monitor threads per a Ractor

• Easy implementation with Ractor local variable (30min)

• Need monitor threads

Timeout
monitor
thread 1

Thread 1

Thread 2

Child Ractor

Timeout
monitor
thread 2

Thread 3

Thread 4

Main Ractor

“timeout”
Solution 2: New communication path
• Use new communication path between Ractors

• 1 monitor process in a Ruby (hard for massive Ractors)

• Difficult API design

Timeout
monitor
thread 1

Thread 1

Thread 2

Child Ractor

Thread 3

Thread 4

Handle managed blocking operations

NT1

Timer Thread

RT1

{blocking read}

{IO is ready}

(3) Add RT1 to ready queue
→ TRQ: [RT2, RT1]

RT2

RT3

Start status:
Ruby threads RT1, RT2, RT3 are there
TRQ (Thread Ready Queue) is [RT2, RT2]

(1)Register RT1 is
waiting for IO

(2) Switch to RT2

RT1

RT2

TRQ: [RT2]

TRQ: [RT3, RT1]

TRQ: [RT2, RT3]

time slice
notification

time slice
notification

TRQ: [RT3]

TRQ: [RT2, RT3]

Continue with IO result

time slice
notification

 RT1 can be scheduled early

19

Quoted from RubyKaigi 2022 talk: Making *MaNy* threads on Ruby

“timeout”
Solution 3: Use native timer thread
• Use a timer thread for M:N thread scheduler

• Timer thread already managing timeout for sleep, etc

• No need Ruby’s timer thread / Better performance because of C impl.

• Need to support not M:N supported platforms

Main Ractor

Timer
native
thread

Thread 1

Thread 2

Child Ractor

Thread 3

Thread 4

Register/unregister timeout

Raise Timeout::Error if timeout occurs

“timeout”
Solution 3: Use native timer thread
module Timeout

simplified version

def timeout(sec, exc = Timeout::Error, msg = “…”)

RubyVM.timeout_exec(

sec, proc{Thread.current.raise exc, msg}) do

yield

end

end

• RubyVM.timeout_exec will call given Proc when times out by
same mechanism of Ractor#interrupt_exec

• Can we introduce general API like Thread.timeout_exec ?

“timeout”
Benchmarking
• 99% of “timeout” call does not timeout

 → measure: N.times{timeout(1){null_task}}

0

1

2

3

4

5

6

null thread thread_ractor native

s
e
c
o
n

d
s

Execution time of 1M timeout() calls

• null: no timeout (== tap)
• thread: original timeout
• thread_ractor: solution 1
• native: solution 3

• “native” is fastest, but not
so fast?

“timeout”
Benchmarking
• “perf” indicated that accessing hardware timer is an issue

• To determine the sleep duration,
clock_gettime(CLOCK_MONOTONIC) is used (1M times).

• Use CLOCK_MONOTONIC_CORSE (on Linux) can help
• Faster, but not accurate (up to 4ms error on Ubuntu) and it is

enough for this purpose.

“timeout”
Benchmarking

0.09

4.80
5.04

3.52

2.18

0

1

2

3

4

5

6

null thread thread_ractor native native (coarse)

s
e
c
o
n

d
s

Execution time of 1M timeout() calls

x2.3
faster

GC Performance issue
Performance survey and no proposals yet

Ring example

• Make 50,000 Ractors

• Send a message (object) to the next Ractor and measure the
time to go around

RT0

RT1

RT2… many threads …

msg

26

RTn

0.69

0.04

0.71

0.11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M:N disabled M:N enabled M:N disabled M:N enabled

GC enabled GC disabled

Go around time (sec)

Ring example benchmark results

x17.25
faster

x6.45
faster

Ring example benchmark results

35.61

31

2.51 2.19

0

5

10

15

20

25

30

35

40

M:N disabled M:N enabled M:N disabled M:N enabled

GC enabled GC disabled

Creation time (sec)

Data from “Ruby におけるM:Nスレッドの実装”, PPL2024

x14
slower with GC!?

GC performance issues on Ractors

(1)To many GCs because of not enough pages

(2)Stopping active Ractors

… and more issues?

GC performance issue
(1) To many GCs because of not enough pages

• Benchmark
• Make N ractors or threads and they run the task which create 1M

arrays

• N.times.map{ Ractor.new{ task } }

• GC count and execution time can be expected to be proportional to
N at worst
• We can expect better speed because of parallel execution

Benchmark result

0

0.5

1

1.5

2

2.5

3

0

1000

2000

3000

4000

1 4 7 10 13 16 19 22 25 28 31 34 37 40

E
xe

c
u

ti
o
n

 t
im

e
 (

s
e
c
)

G
C

 c
o
u

n
t

R/GC count T/GC count R/real (sec) T/real (sec)

• Execution time is
strongly correlated
with GC count

• Ractors have clearly
a larger GC count
than Threads

• GC perf. on Ractors
seems slower than
on Threads

With Ractors

With Threads

Object allocation on Ractors

• At the object allocation on a Ractor, the Ractor reserved a heap page
• To remove additional synchronization per object allocation

• With 3 pages, Ractor 4 tries to reserve a page, but no page

→ Run GC!! even if there are many unused slots

Ractor 1

Ractor 2

Object space heap

Ractor 3

Ractor 4

page Empty slotUsed slot

Object allocation on Ractors

• At the object allocation on a Ractor, the Ractor reserved a heap page
• To remove additional synchronization per object allocation

• With 3 pages, Ractor 4 tries to reserve a page, but no page

→ Run GC!! even if there are many unused slots

Ractor 1

Ractor 2

Object space heap

Ractor 3

Ractor 4

page

GC performance issue
(2) Stopping active Ractors
• Barrier synchronization for each GC (marking) to make sure

the there is no mutation while traversing the whole heap

R1

R2

R3

R4

Need GC

Wait all
Pause
request

Run GC (marking)

Restart
request

Future
GC tuning
• Ractor aware GC tuning

• Prepare enough pages for the number of Ractors

• Ractor local GC
• Need distributed GC techniques

• Need more memory vs. single heap
R1 R2

R R

Future
Proposed methods in this talk
• Ractor#interrupt_exec (and Thread#interrupt_exec)

• Ractor#main?

• Ractor.require(feature)

• Ractor::Channel.new

• RubyVM.timeout_exec(sec, proc)

• And more?

Today’s topics

• Support important features on Ractors
• “require”

• “timeout”

• Memory management issues on Ractors

• Future enhancement plans
• GC strategy

• Proposed APIs

	スライド 1: Ractor Enhancements, 2024
	スライド 2: Today’s topics
	スライド 3: Koichi Sasada
	スライド 4: “Ractor” is
	スライド 5: Strict Ractor rules to make safer concurrent programming
	スライド 6: Issues on Ractors
	スライド 7: Issue of “require” Child Ractors can not call “require”
	スライド 8: “require” Solution: “require” on main Ractor
	スライド 9: Implement “require” with Ractor#interrupt_exec
	スライド 10: Implement “require” with Ractor.require(feature)
	スライド 11: Implement “require” with Ractor.require(feature)
	スライド 12: Implement “Kernel#require” with Ractor.require
	スライド 13: Issue of Ractor supported “require”
	スライド 14: Issue of Ractor supported “require” Provide prepended module?
	スライド 15: Off-topic Ractor/Thread#interrupt_exec
	スライド 16: Issue of “timeout”
	スライド 17: “timeout” Solution 1: Prepare a monitor per each Ractor
	スライド 18: “timeout” Solution 2: New communication path
	スライド 19: Handle managed blocking operations
	スライド 20: “timeout” Solution 3: Use native timer thread
	スライド 21: “timeout” Solution 3: Use native timer thread
	スライド 22: “timeout” Benchmarking
	スライド 23: “timeout” Benchmarking
	スライド 24: “timeout” Benchmarking
	スライド 25: GC Performance issue
	スライド 26: Ring example
	スライド 27: Ring example benchmark results
	スライド 28: Ring example benchmark results
	スライド 29: GC performance issues on Ractors
	スライド 30: GC performance issue (1) To many GCs because of not enough pages
	スライド 31: Benchmark result
	スライド 32: Object allocation on Ractors
	スライド 33: Object allocation on Ractors
	スライド 34: GC performance issue (2) Stopping active Ractors
	スライド 35: Future GC tuning
	スライド 36: Future Proposed methods in this talk
	スライド 37: Today’s topics

