loward

“more”
eTTicient Ruby 2.1

Koichi Sasada

<kol@heroku.com>

Heroku, Inc.

Agenda

* Ruby’s rough history

*Ruby 2.1 new “internal” features

* Internal object management hooks

* Object allocation tracing
* GC hooks

* RGenGC: Restricted Generational Garbage
Collection € Today’s main topic
*Ruby 2.1 expected “internal” features
* Parallel sweeping
 Sophisticated inline cache invalidation mechanism
* Memory efficient string management

About this presentation

* This presentation is advanced version of my last
presentation at RubyKaigi 2013 (May)

* Talked in Japanese (with English slides)
* Recycle presentation (= Good lazy programmer)

Slide PDF is http://rvm.jp/t.pdf

(temporary URL)

*I’'m poor at English speaking
* All contents | want to say are written in my slides
* Please give me a question with slow/clear/easy English ©

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 3

http://rvm.jp/t.pdf

This presentation is NOT about

*Not about Rails application development
*Not about Programming language design
*Not about Mathematics

*Not abou Functional programming languages

*Not about Ruby programming language

Mainly about C programming language
because it is about “C”Ruby

Whoam | ?

e Koichi Sasada a.k.a ko1l

LA

t& ¥ — in Kanji character

* Japanese lesson: “1”

* Onein English

* Mono in Greece

*Eins in German

* Un in French

* Uno in Italian, Spanish

* “Ichi” (“—” in Kanji) in Japanese

*|I’'m the first son of my parents

roemt H heroku

e Koichi Sasada

 Matz team at Heroku, Inc.
* Full-time CRuby developer
* Working in Japan

* CRuby/MRI committer

* Virtual machine (YARV) from Ruby 1.9
* YARV development since 2004/1/1

PROGRAMMING

Language

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

Matz team in Heroku

S iR
o

Nobu @ Tochigi
Patch monster

BES

= L“Do 0 En'iom
‘EEOE AP Hllio = |
| O ek
(o3 ={""]
,’,.\\J-f B28
Matz @ Shimane kol @ Tokyo
Tit | e COI Iecto r Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

EDD developer

Matz team at Heroku
Hierarchy

Matz @ Shimane
Title collector

Communication

with Skype

kol @ Tokyo
EDD developer

Nobu @ Tochigi
Patch monster

Matz
Title collector

*He has so many (job) title
e Chairman - Ruby Association
* Fellow - NaCl
* Chief architect, Ruby - Heroku
* Research institute fellow — Rakuten
* Chairman — NPO mruby Forum
* Senior researcher — Kadokawa Ascii Research Lab
* Visiting professor — Shimane University
* Honorable citizen (living) — Matsue city
* Honorable member — Nihon Ruby no Kai

*This margin is too narrow to contain

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 9

Nobu
Patch monster

*Great patch creator

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 10

Nobu
Patch monster

Commit number per day
30

60
40
20

0
2008/7/1 2009/7/1 2010/7/1 2011/7/1 2012/7/1

—Total Trunk, Last 5 year

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 11

Nobu
Patch monster

Commit number per day
30

60

40

20
O M' | DAL XM i L A Ak b Mu‘uﬂ.ﬂ.; {a ol 11 J l,duulk,l.uA h
2008/7/1 2009/7/1 2010/7/1 2011/7/1 2012/7/1

—Total —matz

Trunk, Last 5 year

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 12

Nobu
Patch monster

Commit number per day
30

60

40

h MMWMMMMMLW

2008/7/1 2009/7/1 2010/7/1 2011/7/1 2012/7/1

—Total —matz kol Trunk, Last 5 year

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 13

Nobu
Patch monster

Commit number per day
30

60

40

; Awmwwmm

2008/7/1 2009/7/1 2010/7/1 2011/7/1 2012/7/1

—Total —nobu —matz kol Trunk, Last 5 year

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 14

Nobu
Patch monster

4% 9% Trunk, Last 5 year

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 15

Kol
EDD developer

25

RubyKaigi
20
Ruby 2.0
15
RubyConf
10)

ZML“_M d Jl Itl.l

\,\/\'\/ \'\/ \'\/ \'\/

\ Y Al W Al W\
0°°\/\ S 0°’\/\ \9\\/ \9\/\ \,\’\\/ \T’\/\ \9’\\/ \9’\/\ \’,”\\/
A A A AT AT AT AT AT AT D

EDD: Event Driven Development

Brief history of Ruby

Brief history of Ruby

1993 2/24 2013/02
Birth of Ruby 1996/12 1999/12 2003/8 Ruby 20th &
(in Matz’ computer) Ruby 1.0 RUby 1.4 RUby 1.8 Ruby 2,0,0

1995/12 1998/12 2000/6 2009/1
Ruby 0.95 Ruby 1.2 | Ruby 1.6 Ruby 1.9.0
15t release
2004/1
Start YARV proj. 2012/4
2000 Book: ISO Ruby

Programming Ruby

2004~
Ruby on Rails

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 18

Brief history of Ruby

A.D. 330 A.D. 1453 2013/02
Constantinople The fall of Ruby 20t &
founded Constantinople Ruby 2.0.0 |
B.C. 490 A.D. 1821
Battle of Marathon The Greek War
B.C. 431 of Independence

Peloponnesian War

“20 years” is not so long!

(compare with Greece history)

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 19

ISO Ruby Standard

* Published at 2012/04
* |ISO/IEC 30170:2012 Information technology --
Programming languages — Ruby
* http://www.iso.org/iso/iso catalogue/catalogue ics/

catalogue detail ics.htm?ics1=35&ics2=060&ics3=&
csnumber=59579

“ISO/IEC 30170:2012 specifies the syntax and
semantics of the computer programming language
Ruby, and the reo,uirements for conforming Ruby
processors, strictly conforming Ruby programs, and
conforming Ruby programs.”

*Hybrid 1.8 and 1.9

* Difference parts are “undefined”

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 20

http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?ics1=35&ics2=060&ics3=&csnumber=59579

Ruby 2.0
Stable version

Ruby 2.0

*New features

* Keyword arugments
* Refinements
* Module#prepend

*Ruby 2.0.0-p385p247 was already released

#-"-rdoc -+~

EWS for Ruby 2.0.0

“This document is

*aliased method:

*ENV.to_h is a new alias for ENV.to_hash

*Fiber

changes made between

releases except for bu fixes.

Note that each entry is kept 5o brief that no reason
behind or

reference information s supplied with. For a full
Tt of changes

with all sufficient information, see the Changelog
file.

Changes since the 1.9.3 release

CAPl updates

* NUM2SHORT() and NUM2USHORT() added. They
are similar to NUM2INT, but short.

* b_newob]_of() and NEWOB)_OF{) added. They
create anew object of a given class

ibrary updates (outstanding ones only)
* builtn classes

*Array
» added method:

* added Arrayibsearch for binary search.

*incompatible changes:

* random parameter of Arrayishufel and
Arrayiisample now

hetresume cannot resumea fser whch
invakes inerhmancto

“file
* extended method:

* Filefnmatch? now expands braces i the
pattern f

File::FNM_EXTGLOB option s given.

*improvements:

*introduced the bitmap marking which
suppresses to copy a memory pege.

with Copy-on-Write

introduced the non-recursive marking which
avldssmespect naoveon

* GCxProfiler
* added method

added GC::Profiler.raw_data which returns
cawarotie s ror e

*Hash
* added method

sdded Hashito_h asexplct comversion
method, like Arrayis

* extended method:

* Hashidefault_proc= can be passed nil to clear

* when given Range arguments, Arraytivalues_at
now returns il for each

value that s out.of-range.

* Enumerable
* added method:

added Enumerableiazy method for lazy

* Enumerator
* added method:

* added Enumeratorfisze for azy size:
evaluation

* extended method:

*Kernel

* added method

* added KernellHash conversion method ke
Arrayl) o Fioat().

* added Kernelusing, which imports
refinements nto the current scope.

fexperimental]

* added Kernel#_dir.
dirname.

which returns a current

* added Kernelfcaller_locations which returns
anarrayof

frame information objects

* extended method:

* Kerneliwarn accepts multiple args n like puts

size evaluation.

“Env

argument ' which specify

required calle size.

neliito_enum and enum_for accept a block
foriany e eviomion.

*incompatible changes:

* system() and exec() closes non-standarfile
descriptors

(The default of :close_others option s changed
to true by defauit)

* respond_to? againsta protected method now
returns false unless

the second argument istrue.

callee_ has returned to the original
behavior, and now

returns the called name but not the original
name inan

allased method.
*Kernelfinspect does not call to_s anymore

(itused to callredefined ito,s).

*LoadError
* added method:

* dded ondErrorgath methosgo et e
file name that could

loaded.

* Module
* added method:

* added Moduletprepend which is similar to
Modulefinclude,

however a method in the prepended module.
overrides the

corresponding method in the prepending
module.

added Modulefrefine, which extends a class
or o otaly

[experimental]

added Modetreinements, whic retuns
refmemns defnea

receiver. [experimental]

» added Moduletusing, which imports
refinements into the receiver.

[experimental]
* extended method:

* Modulefdefine_method acceptsa
UnboundMethod from a Module.

Moduleficonst_get accepts a qualified
constant string, e.5

Object const_get("Foo: Bar::Baz")

* Mutex
* added method:

* added Mutexttowned? which returns the
mutexis held by current

thread or not. [experimental]
*incompatible changes;

* Mutexflock, Mutexttunlock, Mutexttry_lock,
Mutextisynchronize

and Mutextisleep areno longer allowed to be
used fromtraphander

and raise a ThreadError in such case.

* Mutextsleep may spurious wakeup. Check * added Threadithread_variables for getting a

after wakeup. listofthe thread local
variable keys.
* NilClass * added Threadiithread_variable? for testing to

seeifa particular thread

* added method
variable has been set

* added nilto_h which returns ()

variable. See Net:HTTP::new for details.

* gzipand deflate compression are now
requested for il requests by

default. See Net:HTTP for details.

SSL sessions are now reused across connections
fora single instance.

* added X
returns similar information of

Kernelécaller_locations
* Process

*incompatible changes:
* added method

* Thread#oin and Threadivalue now raises a

* added getsid for getting session id (unix only). Threadrror if targetthread

isthe current or main thread.

*Range
* added method: “Time
* change return value:

* added Range#isize for lazy size evaluation.

* Timetto_s returned encoding defaits to US-
ASCII but automatically

f deStIcudnngVaultmtema ifitis
TrECE‘I e

* new class. This class s replacement of
set_trace_func.

* added Rangefibsearch for binary search.

WS

* added Signal signame which returns signal

by using a previously
negotiated session.

* new methods:

* Net:HTTPHocal_host

* Net:HTTPHlocal_hos

* Net:HTTPHocal port

* Net:HTTPHocal_por
* extended method.

et:HTTPHconnect uses local_host and
loca ot epecte

* net/imap

* Net:IMAP default_imap_port

* Net:IMAP default_tis_port

any-new

* added method:

arespecified.

added main.define_method which defines a
gova functon

*string
* added method

* added String# returning a copied string

whose encoding s ASCII-8BIT. © dd HTMLS g mater

" change return value: * CGl#header has been renamed to
d

Calihttp_header an
¢ StingHines nowreurns an rayinstead of an

enumerator aliased to CGliheader.

* When HTMLS tag:
CGltheader,

overwrite
an enumerator. g

*StringHcodepoints now returns an array

Instens mERCOdepoInts e Citheaderfunction s toceate a cheader>

element

* StringHbytes now returns an arraynstead of
an enumerator.

?lony hasbeen removed. Usetigfencode

*Struct instea
* added method
* added Structito_h returning values with keys *iofwait

corresponding to the.

instance variable names. * new features

* added Ofwait_writable method,

Thread e IOt readable method salss of

10wt

* added method

d Threadithread_variable_get for getting

adde .
read o s net/htp

(these are diferent than Fiber local variables). * new features:

tssl_port

featu

* objspace
* new method:

* Objectspace reachable_objects_from(obi)

* openss!

* Consistently raisean error when trying to
encode nil values. Al nstances

of OpenSSL::ASN L Primitive now raise TypeError
when calling to_der on an

instance whose value s nil. Allnstances of
OpenSSLASNL: Constructive.

s NolethodEror i the some cse
Constructing such values s st

permitted

*TL5 1.1&1.2 support by setting,
(OpenSSL:SsL:5SLContextissl_version to

TLSv1_2, TLSv_2_server,
or LSV, TS 1 server

{TLSv1_1_client, The version being effectively
used can bé queried

with OpensSLi:SSLssl_version. Furthermore, itis
also possible to

blacklist the new TLS versions with
OpenSSL:SSL:0P_NO_TLsvi_1

OpenSSL:SSL:0P_NO_TLSv1 2

* Added
OpenSSL:SSL:SSLContextrenegotiation_cb. A
user-defined callback

may be set which gets called whenever a new
handshake is negotiated. This

* Prosies from

dded Threadthread varizble set forsetting L F(Oes 1o now uiormal

thread local variables.

renegotiation attempts.

ial o o
il deauit_port
ight

*Support for "0/n" splitting of records as BEAST
mitigation via

OpenssL::SsL::0P_DONT_INSERT_EMPTY_FRAGME
NTS.

Opensst. requires passwords for decrypting.
PEM-encoded files to be at least

four characters long. This led to awkward
situations where an export with

a password with fewer than four characters was
possible, but accessing the.

e fteryards alled,OpenssLPKeys s,
OpenssL::PKey:D:

Operspey:Cthertore noweforce the
same check when exportin

key to PEM with apassword - it has o be
atleast four characters

Tong.

*SSL/TLS support for the Next Protocol
Negotiation extension. Supported

with OpenssL 1.0.1and higher.

* OpensSL:OPENSSL_FIPS allows client
applications to detect whether OpenSSL

10 reacto the

* ostruct

S—
‘OpenStructheach_pair L]

* Openstructieql?

* Openstructthash

* OpenStructito_h converts the struct o a hash.

* extended method:

* OpenStruct.new also accepts an Openstruct /
Struet.

* pathname

* extended method:

* Pathname#ind returns an enumerator if o
blockis given.

*rake

* rake has been updated to version 0.9.5

“This version is backwards-compatible with
previous rake versions and

contains many bug fixes.

See

http://rake.rubyforee.org/doc/release_notes/rake-

0.9_5_rdoc i for alist

of changesin rake 093,0.9.4and 0.9.5

*rdoc

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

* rdoc has been updated to version 4.0

s version s arely backvards-compatle with

previous rdoc versi

The most otae change s anupdat o the 1
data format ri data mu

be regenerated for gems shared across rdoc
versions). Further APl changes.

areinternal and won't affect most users.

See

* shellwordstshellescapel) now stringifies the
given object using to_s

* Shellwordstishelljoin() accepts non-string
objects n the given

array, each of which isstringfied using to_s,

*syslog

= Added Syslog::Logger which provides a Logger
APl atop Syslog.

Sysog:Priony,SsogsLeve Syslogi Opion and
Spenttine

rdoc for alist of

changesin rdoc 4.0,

* new methods:

* Resolv::DNS#timeouts=

* Resolv::DNS::Configitimeout:

of available
constants on a

running system.

* tmpdir
*incompatible changes:

- irmitmpruss Fletlsemove_entry
instead of

FileUtils remove_entry_secure. This means that
applications should not

change the permission of the created temporary.
directory to make

arguments

- RoLDocumertmurite sppors
new -encoding option. It chany

ML document encoding. Without encoding
opton,encorng

0L decaton s o 0. ot
encodin

* RubyGems.

* Updated to 2.0.0 preview?

RubyGems 2.0.0 features the following
improvements:

* Improved support for default gems shipping.
with ruby 2.0.0+

* Agem can have arbitrary metadata through
Gem:Specificationfimetadata

m search’ now defaults to ~remote and is
anchoret ke gem st

* Added ~document to replace ~rdoc and -
Use ~no-document to

*yaml

= Syck has been removed. YAML now completely
depends onlibyami being

instaled.

*alib

* Added streaming support for Zlb:Inflate and
Zib::Deflate. This allows.

processingafssuesmuwithout te se of arge
amounts of m

* Added support for the new deflate strategies
2lib::RLE and ZIib::FIXED.

* 2l streams are now processed without the GVL.
This allows gzip, 21ib and

deflate streams o be processed in paralle.

Language changes

* Added 56 and %1 for symbol lst creation (similar

only generate rdoc.

= Only ri-format documentation s generated by
default,

*“gem server” uses RDoc::Servlet from RDoc 4.0
to generate HTML

documentation.

Foran expanded listof updates and bug fixes see:

gt comidngans/ iy obioss
ter/Histo

* shellwords

* Default source encoding is changed to UTF-S.
(was Us-ASCIl)

Compatbilty ssues (excluding feature bug.
fixes)

* Arrayivalues_at

See above.

*StringHines
*String#chars
*tring#codepoints.

*Stringhbytes

hese methods no longer return an Enumerator,
iyt

blockis still supported for backwards
compatibliy

Code ke srnes it nde() e,
finenol ..} no long

works because st.lines returns an array. Replace
Tines wi

each_line in such cases.

*signal.trap

Seeabove.

* Merge Onigmo.

https://github.com/k-takata/Onigmo

* The rclose_others option is true by default for
system() and execl).

Also the close-on-exec flag s set by default for
allnew file descriptors.

“This means file descriptors doesn'tinherit to
spawned process unless

explicity requested such assystem(.., fd=>d),

* Kemelirespond 1o? sganstaprotected method
now returns fa

unless the second argument s true.

* Dir.mktmpdir in lib/tmpdir.rb

See above.

* Openstruct new methods can conflict with
custom attributes nam

"each_pair","eq?", "hash" or "to_h".

* Threadjoin, Threadivalue

See above.

* Mutextiock, Mutexhunlock, Mutextitry_lock,
Mutextsynchronize and Mutexsleep

See above.

23

[Ruby(FEEE U T2.0TREESEMK] « DO6BL
WEVSKHHIR

2013/02/14
TH —H=HELinux

=L T =T Fluwda ! (108 |\ wyreeAd—F |/ 257 =

[Rubyld/({—=3>,2.0T,. SEBELTIFE
FERALEZ] —. FR - BEEENET2E
15SHETRHEL TLS [Developers
Summit 20131 T. Rubyd&EHDIFETHD
FOBEWEITVAR (BE) FCDESL
Iz

Ruby 2.0(d&. Ruby&H20@FE=EL =L
T. 20135F2H24H(CUV) - X33 FEOH

_mma == . _ EBEEe¢FEEWNEFUVIR
)'”: JE d-r’—o Ejﬁtﬁ[;ﬂﬁfimqjtt)"“l: [Eﬁfﬂ’?a}’??mﬁfx:

=322 0DFFHETRHET S EEBIC,

Matz said “Ruby is almost matured as a

programming language with 2.0”
http://itpro.nikkeibp.co.jp/article/NEWS/20130214/456322/

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 24

http://itpro.nikkeibp.co.jp/article/NEWS/20130214/456322/

Ruby versions

*Which version of Ruby (MRI) do you use?
1. Ruby 1.8.7

Ruby 1.9.2

Ruby 1.9.3

Ruby 2.0.0 p0

Ruby 2.0.0 p195

Ruby 2.0.0 p247

o eE W

Ruby 2.0.0 is default at Heroku

heroku

Ruby 2.0.0 Now Default on All New Ruby
Applications

Posted 7 days ago by Richard

Heroku provides an opinionated platform in order to help you build better applications. We give you
a default version of Ruby to get you started, and give you a way to declare your version for total
control. In the past creating an application would give you 1.9 2, starting today the default is 2.0.0.

Ruby 2.0.0 is fast, stable, and works out of the box with Rails 4. Applications running on 2.0.0 will
have a longer shelf life than 1.9.3, giving you greater erosion resistance.

https://blog.heroku.com/archives/2013/6/17/ruby-2-default-new-aps

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 26

https://blog.heroku.com/archives/2013/6/17/ruby-2-default-new-aps

Rubyist Magazine
Ruby 2.0 Special articles

Rubyist Wleagazine

Ruby 2 0.0 Release special articles

m 1

o About Buby 200 Eelease special articles

s Messaoes from Eubvists

o Message from Matz
o Ruby 20 on Rails

o Change something silently

o Message from Dave Thomas

m fessage

m Fgvorite Feature

o Message from Charles Qliver Mutter

o Message from Thomas E Enehe

http://magazine.rubyist.net/?Ruby200SpecialEn

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

27

http://magazine.rubyist.net/?Ruby200SpecialEn

Ruby 2.1
Next version

Ruby 2.1 release plan announcement

“I, Naruse, take over the release manager of Ruby
2.1.0 from mame. Ruby 2.1.0 is planed to release
in 2013-12-25. I’'m planning to call for feature
proposals soon like 2.0.0 [ruby-core:45474], so if
you have a suggestion you should begin preparing
the proposal.”

- [ruby-core:54726] Announce take over the
release manager of Ruby 2.1.0

by NARUSE, Yui

2013/12/25!

http://www.flickr.com/photos/htakashi/5285103341/ by Takashi Hososhima

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

30

http://www.flickr.com/photos/htakashi/5285103341/

Ruby 2.1 schedule

2013/02 szraeﬁe 2013/12/25
Ruby 2.0.0 Ruby 2.1.0
O‘ o " l

RubyKaigi2013 Euruko2013 RubyConf2013

5/30, 31, 6/1 6/28, 29 11/8-10

Events are important for
EDD (Event Driven Development) Developers

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 31

Ruby 2.1 release plan announcement

“I, Naruse, take over the release manager of Ruby
2.1.0 from mame. Ruby 2.1.0 is planed to release
in 2013-12-25. I'm planning to call for feature
proposals soon like 2.0.0 [ruby-core:45474], so if
you have a suggestion you should begin
preparing the proposal.”

- [ruby-core:54726] Announce take over the
release manager of Ruby 2.1.0

by NARUSE, Yui

Ruby 2.1 schedule (more)

2013/12/25
Ruby 2.1.0

CED/A\ | /() OQ} O o dind
Ey/ﬁj\//ﬁ\?//\\/ﬁ\ \//\ Jﬁ A \ . N
P < \\\ .
- 2013/07 \ > {A 2013/12 1
Dev-meetin ¢ 2013/10 ® RC
G 2 o - Previewl o

~ w/Matz
2013/06 .
Call for Feature

2013/11
2013/09 /

Feature freeze FICVIEWS
Proposal (CFP)

https://bugs.ruby-lang.org/projects/ruby-trunk/wiki/ReleaseEngineering210

https://bugs.ruby-lang.org/projects/ruby-trunk/wiki/ReleaseEngineering210

Ruby 2.1 schedule (more”2)

2013/12/25
Ruby 2.1.0

o

B.C. 490
Battle of Marathon

B.C. 431
Peloponnesian War

A.D. 1453
The fall of

Constantinople

We are
here!

A.D. 330

~ - o ot]

Ruby 2.1 will be release Immediately!

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

A.D. 1821
The Greek War
of Independence

34

Ruby 2.1

*New features

#-*-rdoc -
= NEWS for Ruby 2.1.0

This document is a st of user visible feature changes made between
releases except for bug fxes.

ot eachetry et s bt o resson beind o
B

i im0t Changelog il

Changes since the 2.0.0 release

Language changes
Core classes updates (outstanding ones only)

*6c
added environment variabi
* RUBY_HEAP_SLOTS ¢ smwm FACTOR: growth rate of the heap.

0
* extended methods:
* [Oiseek accepts symbols (:CUR, :END, :ET) for 2nd argument.

* Kernel
* New methods
* Kernelsingleton_method

* Mutex
*Wtetoumed? 1 1 onger expeimenal,

*string

* New methods:
* String#iscrub and Stringiscrubl verify and fix invalid byte sequence.
* extended methods:
* Ifinvalid: replace s specified for Stringtencode, replac
vl by sequence even ifthe destinaion encoding ecuals (o
the source encoding

* pack/unpack (Array/tring)
* Qland q directives for long long type f platform has the type.

Core classes compatibiltyissues (excluding feature bug fixes)
0
*incompatible changes:

* open ignore internal encoding if external encoding is ASCI-88IT.

* Moduletancestors

‘The ancestors of a singleton class now include singleton classes,
in particular tself.

Stdlib updates (outstanding ones only)

* Digest
* extended m
Digescis. eres optional arguments fo ts constructor

* Added Vectorfcross_product

* Net:smTP
* Added Net: STPHrset to implement the RSET command

* pathname

*ontmametbimrie

* OpenssL:aN
* extended methods:
*OpenSSL::BN.new allows Fixnum)/Bignum argument.

* open-uri
= Support multiple fields with same field name (ke Set-Cookie).

* Resolv
* New methods:
* Resolv:DNS fetch_resource
= One-shot multicast DNS support
*Support LOC resources.

* Rindas:RingServer, Rindas: RingFinger
*Rinda now supports multicast sockets. See Rinda:RingServer and
Rinda: RingFinger o details

ot
“New
“Socekgettadrs

* stringscanner
* extended method:
< engscannerk] suppors ramed captures

* Tempfile
* New methods:
* Tempile.create

Stalb compatibility issues (excluding feature bug fixes)

~uml
*incompatible changes:
*URI decode_www_form follows current WHATWG URL Standard,

P e
It now allows loose percent encoded strings, but denies ;-separator.
*URlencode_www_form follows current WHATWG URL Standard.
It gets encoding argument to convert before percent encode.
UTF-16strings aren't converted to UTF-8 before percent encode by default.

CAPI updates

See NEWS file

Now, much smaller than Ruby 2.0

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

36

Ruby 2.1 features

*Refine m17n introduced from Ruby 1.9
e String#tscrub, String#scrub!

 Verify and fix invalid byte sequence.
*| heard Matz has some ideas.

*Refine features introduced from Ruby 2.0
e Keyword arguments
* Refinements
* Module#prepend

Back to Ruby 2.0

Quote about Ruby 2.0 from Heroku blog

How it Works = Pricing Add-ons Dev Csg

Blog

Matz on Ruby 2.0 at Heroku's Waza

by Craig - Mar 06

Matz, the creator of Ruby, spoke at Waza for the 20th anniversary of the language and the release of
Ruby 2.0. If you weren't in the sold out crowd, not to worry. Information should flow free and experiences
should be shared; in line with those concepts you can watch Matz's talk right here, then read about what's
new in this version of Ruby and how to run it on Heroku

With slides available on speakerdeck

39

20 years of simplicity, elegance, and programmer happiness

Hercku, since its founding, has been aligned with the key values of Ruby — simplicity, elegance, and
programmer happiness. Heroku still believes in the pgwer and flexibility of Ruby, and we've invested in the
language by hiring Yukihiro "Matz" Matsumoto, and Nobuyoshi Nakada. We would like to
thank them and the whole Ruby core team for making #% release happen. Join us in celebrating Ruby's
successes and in looking forward to the next twenty ygars by trying Ruby 2.0 on Heroku today.

Me!

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 40

Ruby apps are running using 1.8.7, you should upgrade. Ruby 1.8.7 is approaching End of Life (EOL) in
three months on June 2013. EOL for Ruby 1.8.7 means no security or bug patches will be provided by the
maintainers. Mot upgrading means you're potentially opening up your application and your users to
vulnerabilities. Don't wait till the final hour, upgrade now to be confident and secure.

Ruby 2.0 has a faster garbage collector and is Copy on Write friendly. Copy on Write or COW 15 an
optimization that can reduce the memaory footprint of a Ruby process when it is copied. Instead of
allocating duplicate memory when a process is forked, COW allows multiple processes to share the same
memaory until one of the processes needs to modify a piece of information. Depending on the program, this
optimization can dramatically reduce the amount of memory used to run multiple processes. Most Ruby
programs are memory bound, so reducing your memory footprint with Ruby 2.0 may allow you to run more
processes in fewer dynos.

If you're not already running a concurrent backend consider frying the Unicorn web server
Features

In addition to running faster than 1.9.3, and having a smaller footprint, Ruby 2.0 has a number of new
features added to the language including:

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 41

Mention about “Speed” of 2.0

Ruby 2.0 has a faster garbage collector and is Copy on Write
friendly. Copy ol

reduce the merr Short summary: GC uses bitmap
copied. Instead marking and CoW friendly
Process is fOrked, o i cii i e e iC i cctiitt co crian e

the same memory until one of the processes needs to
modify a piece of information. Depending on the program,
this optimization can dramatically reduce the amount of
memory used to run multiple processes. Most Ruby
programs are memory bound, so reducing your memory
footprint with Ruby 2.0 may allow you to run more
processes in fewer |

If you’re not alread
trying the Unicorn web server.

Short summary: Let’s try Unicorn!

http://en.wikipedia.org/wiki/Copy-on-write
https://blog.heroku.com/archives/2013/2/27/unicorn_rails

Only mention about GC?

| DON’T work on GC!
People love GC performance

o N>V <)L 4

Let’s consider about
GC/memory management!

Ruby 2.1 development

Ruby 2.1 internal features

*Internal hooks for memory management

*RGenGC: Restricted generational garbage
collection

Today’s topic

Ruby 2.1
Internal hooks for memory management

Internal hooks for memory management
What's nice?

*You can collect more detailed analysis

*Examples
* Collect object allocation site information
* Collect usage of allocated objects
* Measure GC performance from outside

Internal hooks for memory management

e Added events
* RUBY_INTERNAL_EVENT NEWOBIJ

* When object is created

* RUBY _INTERNAL EVENT FREEOBI
* When object is freed

« RUBY_INTERNAL_EVENT GC_START
* When GC is started

* RUBY _INTERNAL EVENT _GC _END
* When GC is finished

GC
Start)
M ar Sweep Sweep Sweep Sweep Sweep
Ru by 9 | > > |
<M.
Stop the
(Ruby)

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

World

GC
End

49

Internal hooks for memory management
*Caution®

*You can *NOT* trace these events using
TracePoint (introduced from 2.0)

*You need to write C-ext to use them, because
events are invoked during GC, etc

Internal hooks for memory management
Sample features

*ObjectSpace. trace_object_allocations

* Trace object allocation and record allocation-site
* Record filename, line number, creator method’s id and class
* Usage:
ObjectSpace.trace_object_allocations{ # record only in the block
o = Object.new

file = ObjectSpace.allocation_sourcefile(o) #=> __ FILE
line = ObjectSpace.allocation_sourceline(o) #=>__ LINE__ -2

}

e Demonstration

Internal hooks for memory management
Postponed job

*You may want to write hooks in Ruby
— Use ‘Postponed job’

* ‘Postponed jobs’ run at same timing as finalizers
e Usage: rb_postponed job register(func, data)
* func(data)’ will be called at a safe-point

*See an sample code in “ext/objspace/gc_hooks.c”
* ObjectSpace.after _gc (start|end) = proc{GC.start}
* Proc is called after GC

Ruby 2.1
RGenGC: new garbage collection

RGenGC: Summary

*RGenGC: Restricted Generational GC

* New GC algorithm allows mixing “Write-barrier
protected objects” and “WB unprotected objects”

* No (mostly) compatibility issue with C-exts

*Inserting WBs gradually

* We can concentrate WB insertion efforts for major
objects and major methods

* Now, Array, String, Hash, Object, Numeric objects

are WB protected

* Array, Hash, Object, String objects are very popular in Ruby

 Array objects using RARRAY_PTR() change to WB unprotected
objects (called as Shady objects), so existing codes still works.

RGenGC: Agenda

*Background
* Generational GC
* Ruby’s GC strategy

*Proposal: RGenGC
* Separating into normal objects and shady objects
* Shady objects at marking
e Shade operation

*Implementation

RGenGC: Background
Current CRuby’s GC
*Mark & Sweep

* Conservative

*Lazy sweep

* Bitmap marking

* Non-recursive marking
*C-friendly strategy

* Don’t need magical macros in C source codes
* Many many C-extensions under this strategy

RGenGC: Background

Mark & Sweep
Root objects 1. Mark reachable
objects from root
objects

marked

2. Sweep unmarked
objects (collection
arked marked and de-allocation)

traverse

traverse

traverse
Collect unreachable

objects

marked marked :

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 57

RGenGC: Background
Generational GC (GenGC)

*Weak generational hypothesis: Most objects die
young - Concentrating reclamation effort on the
youngest objects

*Separate young generation and old generation
* Create objects as young generation
* Promote to old generation after surviving n-th GC
*In CRuby, n == 1 (after 1 GC, objects become old)

e Usually, GC on young space (minor GC)
*GC on both spaces if no memory (major/full GC)

RGenGC: Background
Generational GC (GenGC)

*Minor GC and Major GC can use different GC
algorithm
* Popular combination
—> Minor GC: Copy GC, Major GC: M&S

* On the CRuby’s: both Minor&Major GCs should
be M&S because CRuby’s GC (and existing codes)
based on conservative M&S algorithm

RGenGC: Background: GenGC

Minor M&S GC]

TMINOIGC o *Mark reachable objects
| OOt objects from root objects.

* Mark and promote to old

generation
@ * Stop traversing after old

traverse

objects
<t =2 Reduce mark overhead

*Sweep not (marked or
old) objects

old/ *Can’t collect Some
free unreachable objects

{ Don’t collect old object 1

even if it is unreachable. .

RGenGC: Background: GenGC

Minor M&S GC]

214 MinorGC | t obiect *Mark reachable objects
| oot objects from root objects.

* Mark and promote to old

generation
@ * Stop traversing after old

traverse

objects
<t =2 Reduce mark overhead

*Sweep not (marked or
old) objects

old/ *Can’t collect Some
free unreachable objects

[Don’t collect old object 1

ignore ignore

even if it is unreachable.

61

RGenGC: Background: GenGC

Major M&S GC]

Root objects

* Normal M&S
* Mark reachable objects from

root objects
@ * Mark and promote to old gen

* Sweep unmarked objects

traverse traverse
collect

e Sweep all unreachable
(unused) objects

traverse

old/
free

collect

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 62

GC Lecture

RGenGC: Background: GenGC

Problem: mark miss

Root objects * Old objects refer young objects

— lgnore traversal of old object
= Minor GC causes

marking leak!!

* Because minor GC ignores
referenced objects by old objects

traverse

traverse

Can’t mark new object!
- Sweeping living object!
(Critical BUG)

ignore

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 63

RGenGC: Background: GenGC

Introduce Remember set (Rset)

Remember

Root objects set (RSet)

traverse

1. Detect creation of an
[old->new] type
reference

2. Add an [old object]
into Remember set

(RSet) if an old object
refer new objects

traverse

Remember

RGenGC: Background: GenGC

‘Minor M&S GC] w/ RSet

Remember

Root objects set (RSet)

1. Mark reachable
objects from root
objects
collect

* Remembered objects
are also root objects

traverse

traverse

traverse

2. Sweep not (marked
traverse or old) objects

aruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 65

RGenGC: Background: GenGC

Write barrier

*To detect [old—>new] type references, we
need to insert “Write-barrier” into
interpreter for all “Write” operation

o o

“Write barrier”
[Old->New] type reference
Detected!

RGenGC: Background: GenGC

Write barriers in Ruby

*Write barrier (WB) example in Ruby world
* (Ruby) old_ary[0] = newO # [old_ary - newO]
* (Ruby) old_obj.foo = newl # [old _obj - newl]

old_ary

RGenGC: Background
Difficulty of inserting write barriers

*To introduce generational garbage collector,
WBs are necessary to detect [old—>new] type
reference

* “Write-barrier miss” causes terrible failure
WB miss

Remember-set registration miss

(minor GC) marking-miss

Collect live object - Terrible GC BUG!!

P wnNh e

RGenGC: Problem
Inserting WBs into C-extensions (C-exts)

 All of C-extensions need perfect Write-barriers
 C-exts manipulate objects with Ruby’s C API
* C-level WBs are needed

 Problem: How to insert WBs into C-exts?

* There are many WB required programs in C-exts
* Example (C): RARRAY_PTR(old0)[0] = new1
* Ruby C-API doesn’t require WB before

* CRuby interpreter itself also uses C-APIs

e How to deal with?

* We can rewrite all of source code of CRuby interpreter to
add WB, with huge debugging effort!!

* We can’t rewrite all of C-exts which are written by 3™
party

RGenGC: Problem
Inserting WBs into C-extensions (C-exts)

Two options

Performance | Compatibility A
Good conserYative
: choice
1 Give up GenGC Poor o ekl
5 GenGC with re- Good Most of C-exts
writing all of C exts doesn’t work

Trade-off of Speed and Compatibility

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 70

RGenGC:

Related work on Ruby’s GenGC

*Kiyama, et. al. GenGC for CRuby

* Straightforward implementation for Ruby 1.6
* Need WBs in correct places

* High development cost

e Can’t keep compatibility - Drop all C-exts

*Nari, et.al longlife GC for CRuby
* Introduce GenGC only for Node object

* No compatibility issues because C-exts don’t use
node

* Now CRuby doesn’t use many number of node
objects

* High development cost (to guarantee WBs)

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

RGenGC:
Related work on Ruby’s GenGC

* Make interpreter with other language
infrastructures which have GC

* JRuby, IronRuby
* Can’t keep compatibility with current C-exts

*Separate core heap and CRuby C-ext heap
* High development cost

RGenGC: Challenge

*Trade-off of Speed and Compatibility

* Can we achieve both speed-up w/ GenGC and
keeping compatibility?

*Several possible approaches

e Separate heaps into the WB world and non-WB

world

* Need to re-write whole of Ruby interpreter
* Need huge development effort

* WB auto-insertion
* Modify C-compiler
* Need huge development effort

RGenGC: Our approach

*Create new generational GC algorithm
permits WB protected objects AND WB un-
protected object in the same heap

$

RGenGC: Restricted Generational
Garbage Collection

RGenGC: Invent 3" option
|| Performance | Compatibility _

Good

1 Give up GenGC Poor o ekl
GenGC with re- Good Most of C-exts
writing all of C codes doesn’t work

Ruby 2.1

3 Use new RGenGC choice
works!!

Most of C-exts

Breaking the trade off. You can praise us!!

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 75

RGenGC:
Key idea

ntroduce Shady object

*| use the word “Shady” as
qguestionable, doubtful, ...

* Something feeling dark
« HIZ3, in Japanese

RGenGC:

Key Idea
*Separate objects into two types | shady: doubtful,
* Normal Object: WB Protected questionable, ...
* Shady Object: WB Unprotected
Normal Shady
N(0")/ ("rw-)

*We are not sure that a shady object points
new objects or not

*Decide this type at creation time

* A class care about WB - Normal object
* A class don’t care about WB - Shady object

RGenGC(C:

Key Idea
*Normal objects can be
changed to Shady objects VM
* “Shade operation” Create

e C-exts don’t care about WB,
objects will be shady objects

Shade
* Example Normal
e ptr = RARRAY_PTR(ary) Obj
* In this case, we can’t insert WB for S

ptr operation, so VM shade “ary”

Now, Shady object can’t
change into normal object

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 78

RGenGC
Key Idea: Rule

*Treat “Shady objects” correctly
* At Marking
1. Don’t promote shady objects to old objects

2. Remember shady objects pointed from old
objects

* At Shade operation for old normal objects
1. Demote objects
2. Remember shaded shady objects

RGenGC
Minor M&S GC w/Shady object]

15t MinorGC
Root objects

remember | *Mark reachable objects
set (RSet) from root objects

* Mark shady objects, and
remember *don’t promote* to old
gen objects

collect * If shady objects pointed
$ from old objects, then
‘ﬁ remember shady objects

by RSet.
traverse traverses mark and .
remember - Mark shady ObJECtS

every minor GC!!

traverse

¥ Toward more efficient Ruby 2.1 by Koichi Sasada 80

RGenGC
‘Minor M&S GC w/Shady object]

2nd MinorGC

remember | *Mark reachable objects
set (RSet) from root objects

* Mark shady objects, and
don’t promote to old
gen objects

collect * If shady objects pointed
$ from old objects, then
‘ﬁ remember shady objects
traverse by RSet.

—> Mark shady objects
every minor GC!!

Root objects

ignore

ignore

traverse
traverse

oward more efficient Ruby 2.1 by Koichi Sasada 81

RGenGC
Shade operation]

Remember e Anytime Object can give up to
set (RSet) | keep write barriers

— [Shade operation]

*Change old normal objects to
shade objects
* Example: RARRAY_PTR(ary)
(1) Demote object (old - new)
(2) Register it to Remember Set

RGenGC
Timing chart
2.0.0 GC (M&S w/lazy sweep)

Rub Mark Sweep Sweep Sweep Sweep Sweep
Y* IEEEEEEEST IS IS S é
<€ >
Stop the (Ruby)
World
w/RGenGC (Minor GC)
Markswe P Sweep Sweep Sweep Sweep

Ruby a a

e Shorter mark time (good)

(Ruby)
World e Same sweep time (not good)

* (little) Longer execution time b/c WB (bad)

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 83

RGenGC
Number of objects

2.0.0 GC (M&S)

of Living objects # of Freed objects

&>

w/RGenGC (Minor GC)

of Living objects # of

E E E Freed objects E
€ D> > >

of old (c) # of new # of freed

objects objects (#new) but remembered () # of old ObjeCFS by WB
(#old) objects (b) # of shady objects pointed by old

(c) # of old but shady objects

RGenGC
Number of objects

w/RGenGC (Minor GC) E(a)i (Eb)i

E # of Living objects E # of Freed object

of old (c) # of new # of freed
object object (#new) but remembered
(#old) objects

(a) # of old objects by WB
(b) # of shady objects pointed by old
(c) # of old but shady objects

Marking space Number of unused, | Sweeping
uncollected objs space

Mark&Swep GC # of Living objects Full heap

Traditional GenGC #new + (a) (a) #new
RGenGC #new + (a) + (b) + (c) (a) + (b) Full heap

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 85

RGenGC
Discussion: Pros. and Cons.

*Pros.
* Allow WB unprotected objects (shady objects)

* 100% compatible w/ existing extensions which don’t care about WB
» A part of CRuby interpreter which doesn’t care about WB

* Inserting WBs step by step, and increase

performance gradually

* We don’t need to insert all WBs into interpreter core at a time
* We can concentrate into popular (effective) classes/methods.
* We can ignore minor classes/methods.

* Simple algorithm, easy to develop (already done!)

RGenGC
Discussion: Pros. and Cons.

e Cons.

* Increasing “unused, but not collected objects until
full/major GC

« Remembered normal objects (caused by traditional GenGC algorithm)
* Remembered shady objects (caused by RGenGC algorithm)

* WB insertion bugs (GC development issue)

* RGenGC permit shady objects, but sunny objects need correct/perfect
WBs. But inserting correct/perfect WBs is difficult.

* This issue is out of scope. We have another idea against this problem
(out of scope).

e Can’t reduce Sweeping time

e But many (and easy) well-known techniques to reduce sweeping time
(out of scope).

RGenGC
Implementation: WB support status

I S e

T OBIJECT Supported
T _CLASS Supported Possible to change into shady
T_ICLASS Supported Possible to change into shady
T _MODULE Supported Possible to change into shady
T _FLOAT Supported
T _STRING Supported
T _REGEXP Supported
T_ARRAY Supported Possible to change into shady / more efforts are needed
T _HASH Supported Possible to change into shady
T _STRUCT Supported
T_BIGNUM Supported
T_FILE Unsupported
T_DATA Supported Only InstructionSequence objects are supported
T_MATCH Unsupported Most of MatchData objects are short-lived
T_RATIONAL Supported
T_COMPLEX Supported
T_NODE Unsupported Most of Node objects are short-lived

RGenGC

mplementation

*|ntroduce two flags into RBasic

FL_KEEP_WB: WB protected or not protected

* 0 - unprotected - Shady object
* 1 - protected - Sunny object
* Usage: NEWOBJ_OF(ary, struct RArray, klass, T_ARRAY | FL_KEEP_WB);

 FL_OLDGEN: Young gen or Old gen?
* 0 - Young gen

* 1> 0Oldgen
* Don’t need to touch by user program
*Remember set is represented by bitmaps
e Same as marking bitmap
* heap_slot::rememberset_bits
* Traverse all object area with this bitmap at first

RGenGC
Implementation: WB operation API

(7

d

*OBJ WRITE(a, &a->x, b)

* Declare ‘a’ aggregates ‘b’ o
* Write: *&a->x=b \

e Write barrier

* OBJ_WRITE(a, b) returns “a”

oldv

*OBJ WRITTEN(a, oldv, b)

* Declare ‘@’ aggregates ‘b’ and old value is ‘oldv’
* Non-write operation
* Write barrier

RGenGC

mplementation: WB operation API

*T_ARRAY
 RARRAY PTR(ary) causes shade operation

* Can’t get RGenGC performance improvement
* But works well ©

*Instead of RARRAY PTR(ary), use alternatives
 RARRAY_AREF(ary, n) - RARRAY_PTR(ary)[n]
« RARRAY_ASET(ary, n, obj) > RARRAY PTR(ary)[n] =
obj w/ Write-barrier
 RARRAY_PTR_USE(ary, ptrname, {...block...})

* Only in block, pointers can be accessed by ‘ptrname’ variable
(VALUE®).

* Programmers need to insert collect WBs (miss causes BUG).

RGenGC
Incompatibility

 Make RBasic::klass “const”

* Need WBs for a reference from an object to a
klass.

* Only few cases (zero-clear and restore it)

* Provide alternative APIs

* Now, RBASIC_SET_CLASS(obj, klass) and
RBASIC_CLEAR_CLASS(obj) is added. But they should be internal
APIs (removed soon).

* rb_obj_hide() and rb_obj_reveal() is provided.

RGenGC
Implementation

*RGENGC_CHECK_ _MODE in gc.c

e1: Enable assertions
*2: Enable “WB checking” mode

*WB checking mode
(1) do minor GC
*(2) do major/full GC

*(3) compare result with (1) and (2)
* If living objects in (2) but not living in (1) it should be BUG!!
* Not a perfect (implementation limitation), but a
good method to detect bugs

RGenGC
Performance evaluation

e|deal micro-benchmark for RGenGC

* Create many old objects at first
* Many new objects (many minor GC, no major GC)

*RDoc
* Same RDoc generation as Ruby’s trunk

RGenGC
Performance evaluation (micro)

e Shorter mark time (good)
 Same sweep time (not good)
;, ——mark (RGENGC)
£ 300000000 -=sweep (RGENGC)
% 200000000 A mark

o -— . - % u Sweep
Good mark \

time ©

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 time@

GC count

Same sweep

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 95

RGenGC
Performance evaluation (RDoc)

450
400

€ 250

Several major/full

GC peaks

—Mark Time (ms)

—Sweep Time (ms)
—RGenGC: Mark Time (ms)
——RGenGC: Sweep Time (ms)

RN R R Il Total GC count
Lo T o B o R o B o B o |

e s different

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

RGenGC
Performance evaluation (RDoc)

45000
40000
35000
30000

— 25000

£ 20000
15000
10000

5000

0

About x7 speedup!

Mark Time (ms) Sweep Time (ms)
m M&S mRGenGC

* Disabled lazy sweep to measure correctly.

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 97

Accumulated execution time

RGenGC
Performance evaluation (RDoc)

200

About 20% speedup!

[HEY
Ul
o

100

U
o

Total execution time (sec)

M&S RGenGC
M Exec time (sec) ™ GC time (sec)

* Disabled lazy sweep to measure correctly.

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 98

RGenGC: Summary

*RGenGC: Restricted Generational GC

* New GC algorithm allow mixing “Write-barrier
protected objects” and “WB unprotected objects”

* No (mostly) compatibility issue with C-exts

*Inserting WBs gradually

* We can concentrate WB insertion efforts for major
objects and major methods

RGenGC
Future work

*Minor GC / Major GC timing tuning

* Too many major GC = slow down

* Too few major GC - memory consumption issue
*Inserting WBs w/ application profiling

* Profiling system

* Benchmark programs
*Debugging/Detecting system for WBs bugs

*Improve sweeping performance

Ruby 2.1
Other internal features

|II

Ruby 2.1 expected “internal” features

* Parallel sweeping

* Sophisticated inline cache invalidation mechanism

* Memory efficient string management & Symbol GC

* Fine-grain memory protection to detect WB insertion
miss

* Signal thread

* More efficient inter-process migration technique

* JIT compilation for small part of Ruby code

* Introduce fastpath C-methods

* Inlined Proc.call invocation

* AOT Compiler and extending “require” behavior

e Useful debugger

Parallel sweeping
Background

*RGenGC improve performance only for
“marking” phase

*RGenGC doesn’t improve “sweeping phase”
performance

Parallel sweeping
Background (revisit Rdoc evaluation)

45000
40000
35000
30000
— 25000
£ 20000
15000
10000
5000

0

Almost same

Mark Time (ms) Sweep Time (ms)

B M&S B RGenGC

Accumulated execution time

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 104

Parallel sweeping
Background (revisit RGenGC Timing chart)

2.0.0 GC (M&S w/lazy sweep)

Sweep Sweep Sweep Sweep Sweep

M L H» | --é

<€ >
Stop the (Ruby)

World

w/RGenGC (Minor GC)
Mark,

Ruby a a

p Sweep Sweep Sweep Sweep

e Shorter mark time (good)

(Ruby)
World e Same sweep time (not good)

* (little) Longer execution time b/c WB (bad)

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 105

Parallel sweeping

Introduce sweeping threads (ideal)
w/RGenGC (Minor GC)

Stop the
(Ruby)

World
w/RGenGC (Minor GC) w/Parallel sweeping
Mark
Ruby a a Sweep

h

Stop the

(Ruby)

World

Sweepingthread N N N N N N B N BN BN B N N N |
Sweep in parallel Wait for next GC

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada 106

Parallel sweeping
|deal

*Hide most of sweeping time

Parallel sweeping
Real

*Increase synchronization cost
*|Increase program complexity

*Our preliminary evaluation (implemented in
one night, buggy one) doesn’t show good
score

*To be continued...

Sophisticated inline cache
invalidation mechanism

*From Ruby 1.9 (YARV), inline cache technique
is used in several codes
*Inline method caching < Huge opportunity
* Constant lookup

*Cache invalidation with only one variable
“global state version”

*|nvalidate inline cache, other non-related
inline caches are also invalidated

Sophisticated inline cache
invalidation mechanism

*Invalidate all classes’ method cache

Object
Redefine X, /v’
invalidate all of X Y Z
classes /\ /\
X1 X2 Z1 Z2

X1la

Sophisticated inline cache
invalidation mechanism

“This patch adds class hierarchy method
caching to CRuby. This is the algorithm used by
JRuby and Rubinius.”

[ruby-core:55053] [ruby-trunk - Feature #8426][Open]
Implement class hierarchy method caching

by Charlie Somerville

Sophisticated inline cache
invalidation mechanism

*Invalid only sub-classes under effective class

Object
Redefine X, /“
invalidate X and X Y Z
X'S SUbCIaSSeS /\ /\
X1 X2 Z1 Z2

X1la

Memory efficient string management

*Each string has their string body (space
acquired by malloc())

String

“String body”

ptr

Memory efficient string management

*For some strings have same “string body”,
they has own string body each other.

String
I
I

___ 4‘_‘_‘ I I

- > “String body”

Memory efficient string management

*It can be shared by strings w/ dirty bit.

String

— Reduce memory consumption!!

“String body”
(shared by 5 places)

1 ptr

T Sharing string body is implemented now
if a string object is duped.
This technique is more aggressive approach.

Memory efficient string management

*This mechanism can work with Symbol

management
—> GC-able Symbol

String

“String body”
(shared by 5 places)

1 ptr

Questions and answers

Questions and Answers
RGenGC and CoW friendly

*No problem because only touch flags for
oldgen and shady

Questions and Answers
GC + Threads

*Parallel GC
* Run GC process in parallel (simultaneously)
* Parallel marking
* Parallel sweeping (in today’s talk)

eConcurrent GC / Incremental GC

* Run ruby threads (mutator threads) and GC threads
concurrently

* Major GC consumes huge time (same as current
GC) - Need concurrent GC to reduce pause time

* New WB API is also designed for concurrent GC

Agenda

* Ruby’s rough history

*Ruby 2.1 new “internal” features

* Internal object management hooks

* Object allocation tracing
* GC hooks

* RGenGC: Restricted Generational Garbage
Collection € Today’s main topic
*Ruby 2.1 expected “internal” features
* Parallel sweeping
 Sophisticated inline cache invalidation mechanism
* Memory efficient string management

summary

*We are implementing new features and
improving Ruby’s quality for Ruby 2.1

*Especially introducing new “Generational
garbage collector” will achieve huge
performance improvement

*Ruby 2.1 is currently scheduled on Dec 25,
2013. Don’t miss it!

Thank you

Koichi Sasada

Heroku, Inc.
<kol@heroku.com>

1! heroku

Euruko 2013 Toward more efficient Ruby 2.1 by Koichi Sasada

